305-CD-049-001
EOSDIS Core System Project

Flight Operations Segment (FOS)
Data Management Design Specification
for the ECS Project

October 1995

Hughes Information Technology Corporation
Upper Marlboro, MD

Flight Operations Segment (FOS)
Data Management Program Design Specification
for the ECS Project

October 1995

Prepared Under Contract NA S5-60000

CDRL Item #046
APPROVED BY
Cal Moore/d 9/29/95
Calvin Moore, FOS CCB Chairman Date

EOSDIS Core System Project

Hughes Information Technology Cor poration
Upper Marlboro, Maryland

This page intentionally left blank.

ii 305-CD-049-001

Preface

Thisdocument, one of nineteen, comprisesthe detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1
launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project
include:

305-CD-040 FOS Design Specification (Segment Level Design)
305-CD-041 Planning and Scheduling Design Specification
305-CD-042 Command Management Design Specification
305-CD-043 Resource Management Design Specification
305-CD-044 Telemetry Design Specification

305-CD-045 Command Design Specification

305-CD-046 Real-Time Contact Management Design Specification
305-CD-047 Analysis Design Specification

305-CD-048 User Interface Design Specification

305-CD-049 Data Management Design Specification
305-CD-050 Planning and Scheduling PDL

305-CD-051 Command Management PDL

305-CD-052 Resource Management PDL

305-CD-053 Telemetry PDL

305-CD-054 Real-Time Contact Management PDL
305-CD-055 Analysis PDL

305-CD-056 User Interface PDL

305-CD-057 Data Management PDL

305-CD-058 Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at URL http:/
edhsl.gsfc.nasa.gov.

iii 305-CD-049-001

Thisdocument isacontract deliverable with an approval code 2. Assuch, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class | and Class Il change control requirements described in the EOS

Configuration Management Plan, and changesto this document shall be made by document change
notice (DCN) or by complete revision.

Any guestions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation
1616 McCormick Drive

Upper Marlboro, MD 20774-5372

Y% 305-CD-049-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also alocates the level 4 FOS requirements to the subsystem
design.

Keywords: FOS, design, specification, anaysis, IST, EOC

% 305-CD-049-001

This page intentionally left blank.

vi 305-CD-049-001

Change Information Page

List of Effective Pages

Page Number Issue
Original

iii through xiv Original
1-1and 1-2 Original
2-1 through 2-4 Original
3-1 through 3-164 Original
AB-1 through AB-8 Original
GL-1 thtough GL-8 Original

Document History

Document Status/Issue Publication Date CCR Number
Number
305-CD-049-001 Original October 1995 95-0654

Vil

305-CD-049-001

This page intentionally left blank.

viii 305-CD-049-001

Contents

11
1.2
13
14
1.5

21
22
2.3

31
3.2

3.3

Preface
Abstract
Change Information Page

1. Introduction

(o [Tox £ oo PSP 1-1
001) { o= 1 o o USSP 1-1
0] <SPPSR 11
PUIMDOSE ...t n e sr e e r e e n e nne e nne e 11
StatuS aNd SCREAUIE ... e 1-1
DocUMENt OrganiZALIONc.veeueerieeieseesieeieeeesteeeeseesteseesreessesseesseensesseesseesesseessensens 1-1

Parent DOCUMENE.........ouiieiiie ettt e e e e s e s rr e e e e e e e e s e aanr e e e eeeeeesessnnnrrseeeeaenns 2-1
APPIICEADIE DOCUMENES.......coieiiiiiie ettt st st b et nae e 2-1
INFOrMEatioN DOCUMENEScoiiietiecie ettt ettt ree b sae e et e e sreeebeesaeeebeesreeenns 2-2
2.3.1 Information Document REFErENCEd..........ccvveicueiiiiiiiccee e 2-2

3. Data Management Subsystem

Data Management Subsystem Context Diagramccccceveereeieseeseeieseese e seenens 31
PDB INQESL ... e 3-3
3.2.1 PDB INQESt CONEXLvveiiiiieeiiie ittt sie e e e sna e snnes 3-3
3.2.2 PDB INQESt INtEITACEScciveeieieerie ettt e et ae e 3-5
3.2.3 PDB Ingest Object MOEl ..o 3-5
3.2.4 PDB Ingest DynamiC MoOdelccooieiiiiiieiecee et 35
3.25 PDB Ingest DataDIiCtONaIYccccceeveerieeiieiieseeieseesieeaeseesseeeesseesseseesseesseens 3-13
PDB ValiQaiONooveiiiiiieiieiere sttt bbb 3-17
3.3.1 PDB Vaidation CONEXLccooeeiiiierieeiesiesie et 3-17
3.3.2 PDB Vaidation INTErfaCes ... 3-17
3.3.3 PDB Validation Object MOdE! ... 3-17
3.34 PDB Validation DynamiC MOdE!cccooiiiiimiiiiieeeesese e 3-19
3.35 PDB Validation DataDICtiONarycccccceeiieiieeiiesieesee e esee e 3-19

IX 305-CD-049-001

34

35

3.6

3.7

3.8

39

3.10

3.10.1
3.10.2
3.10.3
3.10.4

PDB EQIT ..ottt bbb 3-19

34.1 PDB Edit CONEXLccueeiieieiiiesieeie sttt 3-19
3.4.2 PDB Edit INtEITACESceiiieieieieieiesiese et 3-19
3.4.3 PDB Edit Object MOUEccoceeieieesece st 3-21
3.4.4 PDB Edit DynamiC MOlcccooiiiiiiiiiieeeeeee e 321
3.4.5 PDB Edit DataDiCliONarycccccceeieeieeieiieseeieseesieeeeseese s ssee e saesneesneens 3-28
PDB REDOIT......ceiiiiieiiiie ettt s st b e st e sbe e sbe e e sabe e e snbe e e nnre e e nnreas 3-38
3.5.1 PDB REPOIt CONEXLccoeeeerieeiiieeesiiesie et 3-38
3.5.2 PDB ReEPOIt INEITACEScccveieieiieiicierieee et s 3-38
3.5.3 PDB Report ObjeCt MOEccoeiieiiieeceeseee e 3-38
3.5.4 PDB Report DynamiC MOGEccooiiiiiiinineneeceeee e 3-44
3.5.5 PDB Report DataDICHONAIYccccoieerierierieerieeie e sie e see e e 3-47
Operational Data GENEIaLIONccceeuireeriieiesieerie e see e sree e eseesee e sreseesneens 3-53
3.6.1 Operational Data Generation CONLEXLccecceereeieeseerieeie e e e esee e 3-53
3.6.2 Operational Data Generation INtErfacesccocevererineneseneeeee e 3-53
3.6.3 Operational Data Generation Object Modelccooveviriiiiinicieeeee 3-53
3.6.4. Operational Data Generation Dynamic Modelccccoveeviieieeieciesecciecns 3-54
3.6.5 Operational Data Generation Data DIClioNary..........ccoceverererenenieeniesese e 3-67
DM S EVENE PrOCESSING ...uveueeeiieriestesiesiesiteeeee e sttt e et st ssesbesae s sseeneeneens 3-73
3.7.1 DMSEvent ProceSSiNg CONEXEcoieriuereerieriesieesieseesieeseesee e ses e e 3-73
3.7.2 DMSEvent Processing INtErfaCescccvevevieiieie e 3-74
3.7.3 DMS Event Processing Object MOdElcoooeriiirieiieeese e 3-74
3.7.4 DMSEvent Processing Dynamic Model ..o 3-77
DMS EVENE RELMEVEL ..ottt s 3-84
3.8.1 DMSEvent Retrieval CONEXTccoviverieriririninieeesie e 3-84
3.8.2 DMSEvent Retrieval INterfaCesS.......cccoveieeeeiiere et 3-85
3.8.3 DMSEvent Retrieval Object MOdElcccoveeiiiiinieeeeeeee e 3-85
3.84 DMSEvent Retrieval Dynamic Modelccoovevviieviciecesece e 3-88
DMS File Management, External Interfaces, Database ACCESScccovvveevveriveieereenn, 3-93
3.9.1 DMS File Management, External Interfaces, Database Access Context 3-93
3.9.2 DMSFile Management, External Interfaces, Database Access Interfaces....... 3-95
3.9.3 DMSFile Management, External Interfaces, Database Access Object............ 3-95
3.94 DMS File Management, External Interfaces, Database Access Dynamic3-99

DMS Telemetry ATCRIVEY ..o 3-119
DMS Telemetry Archiver CONEXLcocuiiiieiieeiie et 3-119
DMS Telemetry Archiver INterfacescccvcevieie i 3-119
DMS Telemetry Archiver Object MOdel ... 3-120
DMS Telemetry Archival Dynamic Model ..o 3-120

X 305-CD-049-001

311

3.12

311
3.2-1
3.2-2
3.2-3
3.2-4
3.2-5
3.2-6
3.2-7
3.2-8
331
3.3-2
34-1
3.4-2
3.4-3
3.4-4
3.4-5
3.4-6
351
3.5-2

3.10.5 DMS Telemetry Archiver Data DIClIONAIYccccooeerererenerienieieesieseeseneens 3-124

DMS Telemetry Playback MEIQErocoiiiiiiiirireeeeee e 3-130
3.11.1 DMS Playback Merger CONEXLc.coceerereereenienieneesiesee e 3-130
3.11.2 DMS Telemetry Playback Merge Interfacescocoovveveece e, 3-131
3.11.3 DMS Telemetry Playback Merge Object Modelcceoveieiiiinenincnee 3-131
3.11.4 DMS Telemetry Playback Merger Dynamic Modelccccooeveniencenennen. 3-133
3.11.5 DMS Telemetry Playback Merger Data Dictionaryccccceeveeveseennenen. 3-138
DMS Teemetry REINEVAccooceeeeeece ettt 3-146
3.12.1 DMS Telemetry Retrieval CONEXTccocvrerieieeieriereseses e 3-146
3.12.2 DMS Telemetry Retrieval INterfacesccccovvvenieieneeneee e 3-149
3.12.3 DMS Telemetry Retrieval Object Modelcccovvevevieiececcece e, 3-150
3.12.4 DMS Telemetry Retrieval Dynamic Model ... 3-152
3.12.5 DMS Telemetry Retrieval Data Dictionaryccccveeverieneenieniesee e 3-158

Abbreviations and Acronyms

Glossary
Figures
DMS CONteXt DIBGIAIM ...c.ecveeeeerieeieseesieeieseesieeeeseesaesaesseessesseesseesseeseesseesesseessesnsens 3-2
PDB INQESt CONLEXLeeeiieiiiiieeteee et n e e sneene 34
PDB Ingest ODjeCt MOE!cooviiiiie e 3-6
PDB Ingest OBJeCt MOEcooieeceeeee e ne s 37
PDB INgest OBJECt MOUEocuiiiieeeeeeee e 3-8
PDB Ingest ODjeCt MOELcooviiiieie e e 3-9
PDB Ingest ODJeCt MOE!ooeeieeeseee e 3-10
PDB INQESt EVENE TTBCE ... 3-11
PDB INgest State DIagramccceeiiieiiieiie et esiee e ee et e e sre e seeesre e sraeeneesnee s 3-12
PDB Validation ObjeCt MOUE!ccoooeiieiieeceece e 3-18
PDB Validation EVENE TTECEoceeiieieiie ettt sttt 3-20
PDB Edit ODJECt MOE ..o 3-22
PDB Edit ODJECt MOE ..o 3-23
PDB Edit ODJECt MOEc.eoveieiecieeeeeeeeee et 3-24
PDB Edit ODJECt MOE ..o 3-25
PDB EQit EVENE TIACE ...ttt st 3-26
PDB Edit StAte DIagramccccoeiiiiiieieieieesiesie et 3-27
PDB Report ODJeCt MOE!ccceeiieiiece et 3-39
PDB Report ObJeCt MOE!ccveiieseeececeee et 3-40

Xi 305-CD-049-001

3.5-3 PDB Report Object MOE!cooiiiiiereeeeee s 341

3.5-4 PDB Report ODJeCt MOUE!c.oooiiiieieeeeee e 3-42
3.5-6 PDB RePOIM EVENE TIACE ...ooiiiiiiciie ittt 3-45
3.5-7 PDB ReEPOIt State DIAQraMccccviviiriiriiiirieieee ettt nes 3-46
3.6-1 Operational Data Generation Object MOdelccooiiiriiiniieee e 3-55
3.6-2 Operational Data Generation Object Modelccoveieiiiiieie e 3-56
3.6-3 Operational Data Generation ObJECt MOUE!ccoovrireieiirenceeee e 3-57
3.6-4 Operational Data Generation Object MOdelccooviiiiiiinii e 3-58
3.6-5 Operational Data Generation Object MOdElccoveviiieiieie e 3-59
3.6-6 Operational Data Generation ObJECt MOUE!ccoovrireierirercneeee e 3-60
3.6-7 Operational Data Generation EVENt TraCe........coocvvereeienieeneereeee e 3-62
3.6-8 Operational Data Generation EVENt TTraCecocveeeveevieiiee st 3-63
3.6-9 Operational Data Generation EVENt TraCeccovvereieiieierese s 3-64
3.6-10 Operational Data Generation EVENt TTaCecccvveeieeiienieenieresee e 3-65
3.6-11 Operational Data Generation State Diagramccccceveeieeieereeieeseere e 3-66
3.7-1 DMSEvent ProcessiNg CONEXTccoieriririiierieniesie sttt 3-75
3.7-2 DMS Event Processing Object MOdElc.ooeeiiiiniiieiereee e 3-76
3.7-3 DMSEvent Procesing EVENE TIaCEccvvveeiieieiee et seesteeee e sne e sne s 3-78
3.8-1 DMSEvent Retrieval Context Diagramccoeiirerinienieeiesese e 3-86
3.8-2 DMSEvent Retrieval Object MOdE!coooiieiiiiieeeee e 3-87
3.8-3 DMSEvent Retrieval EVENE TIaCeccccovieriieniise e 3-89
3.9-1 DMS File Management, External Interfaces,Database Access Context Diagram 3-94
3.9-2 DMS File Management, External Interfaces, Database Access Object Modd 3-96
3.9-3 DMS File Management, External Interfaces, Database Access Object Modd 3-97
3.9-4 DMS File Management, External Interfaces, Database Access Object Model 3-98
3.9-5 DMSFile Storage EVENt TraCe.......cccuiieriiiieriee ettt 3-100
3.9-6 DMSFileRetrieval EVENE TIaCEcccvvivirieiereeieie et nne 3-102
3.9-7 DMS Sybase Table ACCESS EVENE TTaCEccevererieieeere et 3-104
3.9-8 DMSFDF Interface EVEN TraCe........cocveieieireeie et 3-106
3.10-1 DM S Telemetry Archiver Context DIiagramccccccceveeveeieeseeseeiee e 3-121
3.10-2 DM S Telemetry Archiver Object MOdElcoooiieiiiieeeee e 3-122
3.10-3 DM S Telemetry Archiver EVENt TIaCe.......cccvciieiieiiee et 3-123
3.11-1 DMS Telemetry Playback Merger Context Diagramccceeeveeeveeieneeseeseeseeee 3-132
3.11-2 DM S Telemetry Playback Merger Object MOdelccovvireiiiieiereeeeee 3-134
3.11-3 DM S Telemetry Playback Merger Scenario 1 Event Trace.........cccccovveveevieccieecnene, 3-135
3.11-4 DMS Telemetry Playback Merger Scenario 2 Event Traceccccveeeveeveecieseesveennn. 3-137
3.12-1 DM S Telmetry Retrieval Context Diagram.........cccooevererenenesieieenee e 3-148
3.12-2 DM S Telemetry Retrieval Object MOdE!ccoooveiiiciiceceece e 3-151
3.12-3 DM S Telemetry Retrieval Scenario 1 EVENt Tracecccccveeveveevvccie e, 3-153

Xil 305-CD-049-001

3.12-4 DM S Telemetry Retrieval Scenario 2 EVENt TraCecccccveevveeveece s 3-155

3.12-5 DM S Telemetry Retrieval Scenario 3 EVENt TraCeccocvvereeeeieeniesiesesesesieses 3-157
Tables
3.2-1 PDB INQESt INEITACESccueeiiieiie ettt 35
3.7-1 DMSEvent Processing INtErfaCeSccccovvcerieiiiie st 3-74
3.8-1 DMSEvent Retrieval INteIfaCeS.......cccoieieiieiiese e 3-85
3.9-1 DMSFile Management, External Interfaces, Database Access Interfaces 3-95
3.10.2 DMS Telemetry Archiver INtErfaceccccveeieeie e 3-119
3.11-1 Telemetry Playback Merge INterfaces ... 3-131
3.12-1 DMS Telemetry Retrieval INtErfaces.......cccovuieieeiie i 3-149

Xiii 305-CD-049-001

This page intentionally left blank.

Xiv 305-CD-049-001

1. Introduction

1.1 Identification

The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL Item 046
305/DV 2 under Contract NA S5-60000.

1.2 Scope

The Flight Operations Segment (FOS) Design Specification definesthe detailed design of the FOS.
It alocates the level 4 FOS requirements to the subsystem design. It aso defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 053, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated December
6, 1994. It coversreleases A and B for FOS. This corresponds to the design to support the AM-1
launch.

1.3 Purpose

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule

This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. Thisdocument isunder the ECS Project configuration
control.

1.5 Document Organization

305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.
305-CD-042 contains the detailed design for Command Management Design Specification.
305-CD-043 contains the detailed design for Resource Management Design Specification.
305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Rea-Time Contact Management Design
Specification.

1-1 305-CD-049-001

305-CD-047 contains the detailed design for Analysis Design Specification.
305-CD-048 contains the detailed design for User Interface Design Specification.
305-CD-049 contains the detailed design for Data Management Design Specification.
305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

1-2 305-CD-049-001

2. Related Documentation

2.1 Parent Document

The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for the

ECS Project, Volume 2. AM-1 Mission Specific

2.2 Applicable Documents

The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDI S Core System (ECS) and
ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS) and
the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base, Preliminary

209-CD-025-001 |CD Between ECS and AM 1 Project Spacecraft Software Devel opment
and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schemafor the ECS Project

502-1CD-JPL/GSFC Goddard Space Flight Center/MO& DSD, Interface Control Document
Between the Jet Propulsion Laboratory and the Goddard Space Flight
Center for GSFC Missions Using the Deep Space Network

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Mission Operations Centers
and the Network Control Center Data System

530-1ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control Document
Between the Goddard Space Flight Center Payload Operations Control
Centers and the Network Control Center Data System

2-1 305-CD-049-001

530-DFCD-NCCDS/POCC

540-041

560-EDOS-0230.0001

|CD-106

none

Goddard Space Flight Center/MO& DSD, Data Format control
Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

Interface Control Document (1CD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

Goddard Space Flight Center/MO&DSD, Earth Observing
System (EOS) Data and Operations System (EDOS) Data Format
Requirements Document (DFRD)

Martin Marietta Corporation, Interface Control Document (1CD)
Data Format Control Book for EOS-AM Spacecraft

Goddard Space Flight Center, Earth Observing System (EOS)
AM-1 Flight Dynamics Facility (FDF) / EOS Operations Center
(EOC) Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced
The following documents are referenced herein and, amplify or clarify the information presented

in this document.

Specification.
194-201-SE1-001
194-202-SE1-001
193-208-SE1-001
308-CD-001-004
194-501-PA1-001
194-502-PA1-001

604-CD-001-004
604-CD-002-001

604-CD-003-001

194-WP-912-001
194-WP-913-003
194-WP-920-001
194-TP-285-001
222-TP-003-006

These documents are not binding on the content of this FOS Design

Systems Engineering Plan for the ECS Project

Standards and Procedures for the ECS Project

Methodology for Definition of External Interfaces for the ECS Project
Software Development Plan for the ECS Project

Performance Assurance Implementation Plan for the ECS Project
Contractor's Practices & Procedures Referenced inthe PAIPfor theECS
Project

Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline, 3/95

ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

EOC/ICC Trade Study Report for the ECS Project, Working Paper
User Environment Definition for the ECS Project, Working Paper
An Evauation of OASIS-CC for Use in the FOS, Working Paper
ECS Glossary of Terms

Release Plan Content Description

2-2 305-CD-049-001

none Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations
System (EDOS), and the EOS Ground System (EGS) Elements,
Preliminary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-3 305-CD-049-001

This page intentionally left blank.

2-4 305-CD-049-001

3. Data Management Subsystem

The Data Management Subsystem (DM S) provides services for database update and retrieval, file
and table management, external interfaces, and dataarchival and retrieval. The DMS providesthe
capability to update the Project Database with the spacecraft definitions and the instrument
definitions. The DMS generates an operational database from the Project Database. The DMS
provides services to all FOS subsystems for retrieval of the operational database. The DMS
provides file and table management services so that application software will have the capability
to store and retrieve datafiles, and add, update, del ete and retrieve from database tables. TheDMS
provides an interface to FDF, EDOS, and SCDO. The DMS provides services for archiving and
retrieving telemetry data, and events data.

3.1 Data Management Subsystem Context Diagram

The DMS interfaces with the other FOS subsystems and with external entities. These interfaces
are shown in Figure 3.1-1.

User Interface Subsystem - The FOS User Interface Subsystem interfaces with the DMS when
retrieving format definitions, procedures, reports, event history, templates, and other data files.
The DMS receives request for data files, event history requests, analysis requests, and replay
requests from the User Interface Subsystem. User Interface Subsystem sends procedures,
templates, and definitions to the DM S for storage.

Spacecraft and Instrument Manufacturer - The Spacecraft and Instrument Manufacturer provide
the spacecraft and instrument definitions to the DMS. Technical documentation about the
gpacecraft and instruments are stored by the DMS.

SCDO Ingest and Data Server - The DMS sends data to the SCDO Ingest for long term storage,
and retrieves long term data from the SCDO Data Server.

Resource Management Subsystem - The Resource Management Subsystem interfaces with the
DMS when requesting default configuration procedure, and database ids. The database ids are
used when retrieving a database during replay of telemetry. The DMS provides the database ids
and default configuration procedures to the Resource Management Subsystem.

Real-Time Contact Manager - The DMS receives Nascom blocks, performance data, and events
from the Real-Time Contact Manager. The datais made available by the DMS.

Analysis Subsystem - The DMS provides historical telemetry data, and telemetry databases to the
Analysis subsystem. The Analysis Subsystem needs limits, calibration curves, and anaysis
algorithms from the telemetry database so that statistics can be generated from the telemetry data.
The DM S also provides FDF Orbital Information to the Analysis for statistics purposes. Analysis
results generated from telemetry dataand FDF Orbital Information are stored by the DMS and are
made available by the DM S for quick access. Analysis events are stored by the DMS.

SCDO Management Subsystem - The DMS sends status to the SCDO Management Subsystem.
The status contains information about the configuration and state of application software in the
DMS. The DM S receives events from the SCDO Management Subsystem.

3-1 305-CD-049-001

€

T00-670-AD-S0€

EDOS

SCDO Data
Server

Storage Status, Long

Term Archive Data

SCDO
Ingest

Archive Data, Metadata
< Data Requests

Memory Dump,Cmd DB, Activity DB, Table Formats,
rEenstraint DB, Spacecraft Model Info, Navigation Gps=>|
Orbit Maneuver Params

FOS Command

Management

DCP,

DB ldHcp Request,

DBid Reque

FOS Resource
Management

Analysis Results, Tim DB,
F Orbital Info, Historical EDUS >

Loads, Loads, Reports, Ground Script, Events,
Cmd DB Back Orbit Memory Model Updates
FOS Command Tim File
Events S Information, Orbit Data, Everts———
FOSS rI]DIatajnrlm_ing &
Spacecraft Definition Data, P&S Info cheduling
Devgloopsment Operator Support Real-Time Command Info >
Faciiity ocumentation
DF Products——— FDF
Definitions, Procedures, Reports,
'Tr?tgrf%zgr vent History, Templates, Data Files
DMS Requests, Procedures, Events,
plates, Definitions, Analysis Reque: Spacecraft Status Data,Validated PDB
Replay Requests Instrument Database Information > PICC
FOS Data Database Requests,
. . Management atabase Updates
Spacecraft & Technical %%t‘:?mentatlon, g
———Spacecraft & Instrume .
Instrument Definitions Tim DB, Replayed EDU's,
Manufacturer Expected S/C State >
FOS Telemetry
Us, Events, Memory Dump—
Rceglr;grcr;e Nascom Blocks, Events,)
Manager CODAs, Undected Fault Notification Analysis Results
g Events A
FOS Analysis

st,

Status >> MSS

Events

Figure 3.1-1. DMS Context Diagram

Telemetry Subsystem - The DMS provides the telemetry database to the Telemetry Subsystem.
The Telemetry Subsystem needs the telemetry database when decommutating real-time and replay
telemetry. The Telemetry Subsystem sends real-time housekeeping telemetry, memory dumps,
and telemetry events to the DM Sfor storage.

IP ICC - The DMS receives database requests and database updates from an IP ICC, sends
spacecraft status data and database information to an IP ICC.

Planning and Scheduling Subsystem - The DM provides the spacecraft definitions database and
planning and scheduling information to the Planning and Scheduling Subsystem. The Planning
and Scheduling Subsystem uses the activity and constraint definitions from the spacecraft
definitions database. The DMS provides storage for the orbital datathat Planning and Scheduling.
Planning and Scheduling events are stored by the DMS.

Command Management Subsystem - The DM S provides the command database, activity database,
constraint database and files used to support planned operations to the Command Management
subsystem. Activity definitions, constraint definitions and command definitions from the database
are used when generating command loads. The DMS provides a storage areafor command loads,
memory dumps, and ground scripts. Command Management events and reports are stored by the
DMS.

Command Subsystem - The DMS provides the command database to the Command subsystem.
The database is used during areal-time contact to build commands to be uplinked to the spacecraft.
The DM S provides previously generated loads (e.g., microprocessor memory loads) from the FOS
file storage area to the Command subsystem for uplink to the spacecraft. Command events
generated by the Command subsystem are stored by the DMS.

FOS Development Facility - The Operator Support Documentation generated by the FOS
Development Facility is stored at the DM S for later use by the User Interface Subsystem.

Flight Dynamics Facility - The DMS receives orbital information from the Flight Dynamics
Facility. The orbital information is validated and stored in data files and database tables.

3.2 PDB Ingest

3.2.1 PDB Ingest Context

The PDB Context diagram represents the interface overview of the FOS Database. Definitionsare
received from external sources to the Data Management Subsystem, processed within, and made
available for operational use to other FOS Subsystems.

3-3 305-CD-049-001

v-€

T00-670-AD-S0€

Spacecraft &
Instrument
Manufacturer

— Telemetry & Command Database

Instrumentors

Instrument Updates

< PDB Reports

Flight
Operations
Team

PDB Inputs/Updates

e PDB Reports

DataManagement Subsystem

FOS Database
Activity

oDT

Project
Data
Base

Command
oDT

Telemetry
ODF

Telemetry
OoDT

Constraint

oDT Command

ODF

Figure 3.2-1.

PDB Ingest Context

Telemetry ODF

This System

Command,Constraint, & Activity ODT,
CEV ODF

Activity & Constraint ODTs ———=>

>> Interface

FOS
User

SIS

Real-Time

SIS

Command
Command ODF ———>> S/S

Planning
and
Scheduling

=

Command
Management
SIS

Telemetry ODF —M > Analysis

SIS

3.2.2 PDB Ingest Interfaces

Table 3.2-1. PDB Ingest Interfaces

Interface Interface Class Interface Class Service Provider Service | Frequency
Service Description User
Invoke PDB FdDbFuilnterface | Provide interface FUI DMS upon
Database screens to invoke delivery of
Initialization PDB Database IT database
Initialization
Invoke PDB FdDbFuilnterface | Provide interface FUI DMS as needed
Ingest screens to invoke
PDB Ingest
Invoke PDB FdDbFuilnterface | Provide interface FUI DMS as needed
Edits screens to invoke
PDB Edits
Invoke PDB FdDbFuilnterface |Provide interface FUI DMS after PDB
Reporting screens to invoke validation
PDB Reporting as needed

3.2.3 PDB Ingest Object Model

The base class FADbPDBInput represents the input definitions to the EOS AM-1 Project Database
(PDB). It consists of the subclasses FADbTelemetryDefs, FADbCommandDefs, FdDbConstraint-
Defs, FdDbActivityDefs. Additionally, the input definitions are provided by the Integration &
Test Database, the FOT and as updates from the Instrument Operations Teams.

FdDbProjectDatabase represent the EOS AM-1 Project Database (PDB) that resides at the EOC.
This collection of telemetry, command, constraint and activity definitions are derived from the
base class FdDbProjectDatabase and are presented in the subclasses FdDbTelemetryPDB, FdDb-
CommandPDB, FdDbConstraintPDB, FdDbA ctivityPDB, respectively.

The FdDbL oadPDBInput classis responsible for controlling the loading of the PDB input defini-
tionsinto the PDB structure at the EOC. Upon completion of this process, the PDB resides as the
FdDbUnval ProjectDatabase class where it awaits validation.

3.2.4. PDB Ingest Dynamic Model

3.2.4.1 PDB Ingest Scenario Abstract

The PDB Ingest scenario describes the process of loading the definitions files into the PDB data-
base table structures at the EOC.

3-5 305-CD-049-001

9-¢

T00-6¥0-dD-S0E

FdDbPDBInput

myPDBFname
myRecLen
myNoFiles

provides data

-Fd DbFuilnterface

FdDbLoadPDBInput

LoadTImPDB
FdDbFuilnterface LoadCmdPDB
invokes. LoadActPDB
LoadConPDB
Integration & Instrument FOT
Test Database Updates
definitiions
FdDbTelemetryDefs FdDbCommandDefs FdDbActivityDefs FdDbConstraintDefs
myTImFname myCmdFname myActFname myConFname

Figure 3.2-2. PDB Ingest Object Model

FdDbInitPDB

invokes
CrePDBStruct
FdDbProjectDatabase
mySCID initiated by
myCreateDate
myPDBType
myValidFlag
FdDbUnvalProjectDatabase FdDbValProjectDatabase
FdDbTelemetyPDB FdDbCommandPDB FADbACHViyPDE FdDbConstraintPPDB
myTimName myCmdName myActName myConName
myTimSource myCmdSource myActSource myConSource
provides provides
and valid
provides definitions activities
telemetry
mnemonics
provides valid

L-€

FdDbTelemetryPDB

myTImName
myTImSource

T00-670-AD-S0€

FdDbUnvalTimPDB FdDbValTimPDB
FdDbTImParm FdDbTImPacket FdDbTImConst
FdDbLimitSet myPktApid myPktApid myConstMnem
myTImMnem myTImMnem myPktLen myConstType
myLimitSet myDataRep myPktDesc myConstValue
mySwitMnem FdDbAnalogTim myTIminst myConstDesc
myMinValue myTimMnem myPktOffset T
myMaxvalue mylnputFmt myParmsize located
® myConvType myGycler. in FdDbDscState
Y P myDeltaTime |
® myConvNum myTImMnem FdDbDerivedTIm
FdDbDeltaLimit FdDbRYLimit yrgygcaleFactor myMinValue myDrvMnem
. yDataUnits myMaxValue i
myTImMnem provides TimMnem Y myDrvUnits
DNEUINd selection my tim!? myStateText myCompRate
myl n criteria myLimitSet | Inputopl
myDeltaValue myDNEUInd X . mylnputOp:
provides provides analog desdribes myCalFlagl
myRedLow equation characteristics myOperl
myYellowLow | o mylnputop2
m%gl‘;ﬂ;’;gh FdDbTImDesc FdDbContxtDep myCalFlag2
myTImMnem myTImMnem myOper2
myTImPID myCntxtMnem mylnputOp3
L4 myMijrAssem defined by myDNEUInd myCalFlag3
24 myCompName myLowVal myOper3
FdDbCalCurve mySubassem myHighval myl(|:1pll’1:t|0p;1
myRTIDName myCalFag
myConvNum myTImType myOper4
myConvName m¥Parm¥I};pe mylnputOp5
myCZero mySCCReqFlg ~ [—————provides valid telemetry reference: myCalFlags
myCOne myTImDesc myOper5
myCTwo mylnputOp6
myCThree myCalFlagé
myCFour
myCFive |
provides telemetry referenc references
L——provides limit boundaries———
referencs
provides delta definitior

references

Figure 3.2-3. PDB Ingest Object Model

8¢

T00-670-AD-S0€

FdDbCommandPDB

myCmdName
myCmdSource
FdDbUnvalCmdPDB FdDbValCmdPDB
FdDbCmdPrestate FdDbCmdVerify FdDbCmdDesc FdDbCmdParm FdDbFixCmd FdDbVarCmd FdDbTbIDef FdDbFIdDef FdDbMemMask
myCmdMnem myCmdMnem myCmdMnem myCmdMnem myCmdMnem myCmdMnem myTbINum myTbINum myStrtAdd
myPreregMnem myCEVMnem myCmdPID myCmdType myWrdNum mySubfldName myTbIMnem myFldNum myNumMskWrds
myDNEUInd myDNEUInd myMjrAssem myRTName myDataValue myDefltValue myTbIType myFldDesc
myLowVal myLowVal myCompName myRTSubadd mySubfldLen myStartAdd myValType
myHighval myHighVal mySubassem myWordCnt myDestFirstBit myMaxSize myDefltValue
myTimeOut myCmdDesc myWordType 1-33 myDestLastBit myTbIDesc myValBitSize
mySafetyLvl myDataUnits
myRgChkFlg
L4 0-10 myScaleFact
verified 1 myLowVal
by vegﬂed myHighVal
| Y myValOvrFig
| sty |
FdDbTImDesc efined by- I
c
myTImMnem defined by L——defined by-
myTImPID
myMijrAssem
myCompName
mySubassem
myRTIDName
myTimType FdDbVarState
myParmType .
mySCCReqFlg myMinval
myTImDesc myMaxVal
myStateText

Figure 3.2-4. PDB Ingest Object Model

6¢

T00-670-AD-S0€

FdDbConstraintPDB

myConName
myConSource
FdDbUnvalConPDB FdDbValConPDB
FdDbCmdConstrt
FdDbActConPDB
myConstrtRule
FdDbActConstrt FdDbOpMode FdDbOpModeTran FdDbConsumeCon FdDbFOV references
myConstrtRule myResName myResName myResName myResName
myModeName myModeTrans myMaxConsumVal mySwathType
myPwrConsumpt y hDim
myDataRate
references
FdDbCmdParm
FdDbActivityDef myCmdMnem
myActName : RWCStfing myCmdType
myOwner : EcTInt myRTName
myResID : EcTint myRTSubadd
myStrtTrig : RWCString myCmdDest
myOvrdFlag : RWCStfing myWordCnt
myStrtTrigDelta : EcT)nt myWordType
myMinDur : EcTInt myCmdLen
myDuration : EcTiInt mySafetylLvl
myDurOvrdFlag : RW[CString
myEntryModes : RW({String
myMode : RWCString|
myExitMode : RWCStfing

Figure 3.2-5. PDB Ingest Object Model

0T-€

T00-670-AD-S0€

FdDbActivityPDB

myActName
myActSource

FdDbActivityDef

myActName : RWCSHfil

myOwner : EcTInt
myResID : EcTInt

myStrtTrig : RWCStrirlg

myOvrdFlag : RWCSH]
myStrtTrigDelta : EcT]|
myMinDur : EcTInt
myDuration : EcTInt
myDurOvrdFlag : RW|

myEntryModes : RW{String

myMode : RWCString
myExitMode : RWCSH|

ing

CString

FdDbCmdParm

myCmdMnem
myCmdType
myRTName
myRTSubadd
myCmdDest
myWordCnt
myWordType
myCmdLen
mySafetyLvl

ified by

FdDbUnvalActPDB FdDbValActPDB
= =
FdDbActCmd FdDbActCmdParm
- myActName : RWC§tring - myActName : RWC$tring
- myCmdMnem : RWEString - myCmdMnem : RW¢String
- mySSind : RWCStrifg - myParmName : RWLString
- myDeltaTime : RWTime - myLowLimit :.EcTIn
- myCmdType : RWCString - myHighLimit : EcTinf
- myValidvals : RWC$tring
- myDefaultval : EcTIpt
- myModFlag : RWCSftin
rel‘erent:es4 I—references— Y 9 9
rified by
|—verified by L verified by—l
FdDbECLDirList FdDbCmdProcList FdDbCmdConstrt

myConstrtRule

Figure 3.2-6. PDB Ingest Object Model

T1-€

T00-670-AD-S0€

Intergration & Test Database

User

FdDbPDBInput

EOT Instrument Updates DBA Interface
initialize database
transtit PDB defintions to the FOS >>
providg PDB
definifions >
provide
PDB >
updates
select DB
I Utilittes menu >
from User Interface
display
I<<&— DB Utilities
menu
select
—— PDB Ingest —>>
option
invoke PDB >
ingest

— load PDB input —>

Figure 3.2-7. PDB Ingest Event Trace

FdDbUnvalProjectDatabase

(A

T00-670-AD-S0€

Database Idle/ database
Wait for DBA to initialization
invoke database invoked/

initialization database
initialized

@<—generate ODB invoked/ODB generate

Wait for

Database Idle/

to invoke
data load

DBA

data load invoked/
data loaded

Database Idle/

new I&T Wait for DBA .
database to edit or invoke edit PDB
received validation

acti

Database Idle/
Wait for DBA

database validation invoked

database validation complete/
additional edits desired

on

generat

gene

e report
invoked/report

rated

®

Figure 3.2-8. PDB Ingest State Diagram

3.2.4.2 PDB Ingest Summary Information
Interfaces:
User Interface
Stimulus:
DBA selection of the PDB ingest option
Desired Response:

The loading of the telemetry, command, constraint and activity definitions into the PDB
database table structures.

Pre-Conditions:

Database up and running.

Database table structures have been initialized.

Definitions files have been transferred to a dedicated directory at the EOC.
Post-Conditions:

The PDB definitions have been loaded into the internal database structures.

3.2.4.3 PDB Ingest Scenario Description

PDB ingest is an operational function invoked by the Database Administrator (DBA). The selec-
tion of the PDB ingest option from the Database Utilities menu begins the process of 1oading the
definitions files into the database table structure at the EOC. Upon completion, the PDB is ready
for validation.

3.2.5 PDB Ingest Data Dictionary

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

Class Name: FdDbActConPDB

The Activity Constraint PDB class represents the activity-level constraints that are defined for
instruments, spacecraft subsystems and ground system components.

ClassName: FdDbActConstrt
The Activity Constraint class represents the activity-level constraints rules.

ClassName: FdDbActCmd

The Activity Command class provides the definitions of commands that make up a specific
activity.

3-13 305-CD-049-001

Class Name: FdDbActCmdParm

The Activity Command Parameter class provides the definitions of the parameters for each com-
mands that makes up a specific activity.

ClassName: FdDbActivityDef
The Activity Definition class provides the attributes of an activity.

ClassName: FdDbActivityPDB
The Activity PDB represents the activity definition files used to support FOS operations.

ClassName: FdDbAnaogTIm

The Analog Telemetry class provides characteristic information about analog telemetry parame-
ters.

ClassName: FdDbCalCurve

The Calibration Curve class defines the coefficients used to convert raw telemetry valuesinto EUs.
Each polynomial calibration equation may specify up to 6 coefficients (e.g., 5th order polynomial).
At aminimum, each equation must contain 2 coefficients.

ClassName: FdDbCmdConstrt

The Command Constraint class indicates the command-level constraintsthat are defined for instru-
ments, spacecraft subsystems and ground system components.

Class Name: FdDdCmdDesc

The Command Description class provides descriptive information about a spacecraft or instrument
command parameter.

ClassName: FDbCmdParm

The Command Parameter class defines a spacecraft or instrument command which is used to sup-
port the EOS AM-1 spacecraft.

ClassName: FdDbCmdVerify

The Command Execution Verification (CEV) class definestelemetry parameters used to verify the
reception and execution of an associated command by the spacecraft subsystem or instrument.

Class Name: FdDbCommandPDB

The Command PDB class represents the command definitionsfiles needed to support commanding
of the EOS AM-1 spacecraft.

3-14 305-CD-049-001

Class Name: FdDbConstraintPDB

The Constraint PDB class represents the constraint definition files needed to support constraint
checking for commands and activities during FOS operations.

ClassName: FdDbConsumeCon

The Consumable Constraint class represents a modeling parameter that can be consumed and re-
plenished.

Class Name: FdDbDeltaLimit

The Delta Limit class defines delta limit checking criteria associated with an analog telemetry pa-
rameter.

Class Name: FdDbDerivedTIm

The Derived Telemetry class defines simple equations that combine previously defined analogs,
discretes, constants and other derived parameters via arithmetic or logical functions.

ClassName: FdDbDscState

The Discrete States class associates a single text state to arange of values for a discrete telemetry
parameter.

Class Name: FdDbFixCmd

The Fixed Data Word Specification class defines the optional data words associated with a com-
mand.

ClassName: FDbFdDef
The Table Field Definition class defines entries within the spacecraft or instrument table.

Class Name: FdDbFOV

The Field-Of-View Specification class identifies the shape and dimensions associated with an in-
strument or spacecraft subsystem sensor swath.

3-15 305-CD-049-001

Class Name: FdDbLimitSet

The Limit Selection Specification class defines the selection criteriafor setting telemetry parame-
ter limits.

ClassName: FDbMemMask

The Memory Masking Definition class identifies an area of spacecraft instrument memory which
isignored when comparing the dump and ground memory image.

ClassName: FdDbOpMode

The operational mode identifies an operational state associated with an instrument, spacecraft sub-
system or EOC ground system component.

ClassName: FdDbOpModeTran

The Operational Mode Specification class indicates the valid operational state transitions for in-
strument, spacecraft subsystems or ground system components as defined at the level mode.

ClassName: FdDbProjectDatabase

The Project Database class represents the telemetry, command, constraint and activity definition
files needed to support FOS operations.

Class Name: FdDDbRY Limit

The Red/Y ellow Limit Specification record defines the red/yellow - high/low limit checking crite-
ria associated with an analog or discrete telemetry parameter.

ClassName: FdDbTblDef
The Table Definition class defines area of the spacecraft or instrument memory.

ClassName: FdDbTelemetryPDB

The Telemetry PDB class represents the telemetry definition files needed to support telemetry pro-
cessing during FOS operations.

ClassName: FdDbTImDesc
The Telemetry Description class provides descriptive information about a telemetry parameter.

3-16 305-CD-049-001

ClassName: FdDbTImPacket
The Telemetry Packet Specification class definesvalid CCSDS packets for processing by the FOS.

Class Name: FdDbTImParm

The Telemetry Parameter Specification class provides the mapping tables used to decommutate the
downlink telemetry streams into specific analog or discrete telemetry mnemonics.

ClassName: FDbVarCmd

The Command V ariable Data Word Specification class defines the subfields associated with vari-
able type commands.

ClassName: FdDbVarStates
The Variable States class provides the states associated with a subfield.

3.3 PDB Validation

3.3.1 PDB Validation Context
Refer to Section 3.2.1

3.3.2 PDB Validation Interfaces
Refer to Section 3.2.2

3.3.3 PDB Validation Object Model

The FdDbProjectDatabase class represent the AM-1 Project Database (PDB). This collection of
definitionsfilesis stored at the EOC, validated and made available for operational use. Thesefiles
are made up of telemetry, command, constraint and activity definitions (FdDbTelemetryPDB, Fd-
DbCommandPDB, FdDbConstraintPDB, FdDbActivityPDB). The PDB Validation Object M odel
reflects the process from which the PDB is taken from the class, FdDbUnval ProjectDatabase, to
the class, FdDbValProjectDatabase. The FdDbUnval ProjectDatabase class represents the PDB
when it has been loaded into the internal PDB structures at the EOC. The FdDbVaProjectData-
base class represents the definition files once they have been validated.

Each of the PDB validation subclasses (FdDbValidateTIm, FdDbValidateCmd, FdDbValidate-
Con, FdDbValidateAct) is derived from the FdDbValidatePDB base class. They are responsible
for controlling the validation of each type of PDB definition.

The FdDbVa SumLog classis responsible for maintaining errors found during the validation pro-
cess.

3-17 305-CD-049-001

FdDbProjectDatabase

mySCID
myCreateDate
myPDBType
myValidFlag

81-€

FdDbT DB FdDbC: DB FdActivityPDB FdConstraintPDB
myTimName myCmdName myActName myConName
myTimSource myCmdSource myActSource myConSource

provides provides
rovides valid I
L vaild telometry command octiity
FdDbUnvalProjectDatabase FdDbValProjectDatabase mnemonics mnemonics
provides valid
command mnemonics
FdDbValidatePDB
|— produces
mySCID
L validated by —| myPDBType
FdDbFuilnterface myValType
" FdDbValSumLog
fnvokes Enableval

mySCID

myPDBType

myPDBName

myPDBItem

myErorNum

myErrorMsg

ViewLog

PrintLog

T00-6¥0-dD-S0E

FdDbValidateTim FdDbValidateCmd FdD on FdD
VerifyTimRules VerifyCmdRules VerityAcRules
XvalTimRef XvalCmdRet

Figure 3.3-1. PDB Validation Object Model

3.3.4. PDB Validation Dynamic Model

3.3.4.1 PDB Validation Scenario Abstract

The PDB validation scenario describes the process in which the definitions files used to support
FOS operations are validated.

3.3.4.2 PDB Validation Summary Information

Interfaces:

User Interface
Stimulus:

DBA selection of PDB validation
Desired Response:

The creation of the validated telemetry, command, constraint and activity PDB.

Creation and generation of a PDB validation summary log.
Pre-Conditions:

Database up and running.

Database table structures have been initialized.

PDB definitions have loaded into the internal database table structures.
Post-Conditions:

Validated PDB

3.3.4.3 PDB Validation Scenario Description

PDB validation is an operational function invoked by the Database Administrator (DBA).
Through the selection of the PDB validation option on the Database Utilities menu, this process
beginswith the validation of the telemetry definitions. PDB validation is ordered by the PDB type
to ensure the integrity of the definitions. Next, the command definitions are validated, followed
by the validation of the constraint and activities definitions. The telemetry and command defini-
tions are provided by the AM-1 integration and test database. Each time changes occur to the te-
lemetry and command definitions maintained at the EOC, validation of the entire PDB isrequired.
Constraint and activity definitions are provided by the FOT through the use of database interface
tools. The changesto thisdata occur independent of the telemetry and command definition chang-
es. For thisreason, the constraint and activity PDB may also be validated when only their changes
occur. Validation errors are reported in avalidation summary |og.

3.3.5 PDB Validation Data Dictionary
Reference Section 3.2.5 PDB Ingest Data Dictionary.

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

3.4 PDB Edit

3.4.1 PDB Edit Context
Refer to Section 3.2.1.

3.4.2 PDB Edit Interfaces
Refer to Section 3.2.2.

3-19 305-CD-049-001

0c-€

T00-670-AD-S0€

User

DBA Inter

select DB Utilities menu >
from User Interface

I<<—display DB Utilities menu ——

select PDB >
Validation option
< display
validation options

select complete
I validation option_>

< display telemetry

validation status

< display command

validation status

< display constraint

validation status

face

<——

<

<

<<——

< display activity
validation status

invoke PDB validation —>>f

return telemetry
validation status

return command
validation status

return constraint
validation status

return activity
validation status

FdDbValidatePDB

FdDbUnvalProjectDatabase

FdDbValProjectDatabase

—enable telemetry validation —>>

verify telem

cross-validate tele

— enable command validation —>f

verify comn

cross-validate com

— enable constraint validation —=>f

—— enable activity validation —>>

verify acti

cross-validate ag

| update telemetry definition

as valid >
etry rules — >

metry definitions — >

| update command definition >
as valid

nand rules —M8 >

mand definitions ———————>>

| update constraint definition >
as valid

update activity definition >
as valid
ity rules ——m8 ———— >

ivity definitions —— >

update validation
summary >

| update validation
summary >

update validation
summary >

| update validation
summary >

Figure 3.3-2. PDB Validation Event Trace

FdDbValSumLog

3.4.3 PDB Edit Object Model

FADDbEditPDB represents the database editor interface class to perform edits to the AM-1 Project
Database (PDB). The FdDbUnvalProjectDatabase class provides data to the FADbEditPDB class.
(The FdDbUnvalProjectDatabase class is derived from the FdDbProjectDatabase class and is
described in Section 3.2.) The FADbEditPDB class is made up of the FADbEditTImScrn,
FdDbEditCmdScrn, FADbEditActScrn, and FADbEditConScrn subclasses. The FADbEditPDB
class providesthe capability to retrieve data, delete data, save data, and move between datarecords
in the case of amulti-record retrieval. All edits made to the PDB are logged by the FADbEditL og
class. This class provides the capability to send the log to the printer or view the log from the
screen.

3.4.4 PDB Edit Dynamic Model
3.4.4.1 PDB Edit Scenario Abstract

3.4.4.2 PDB Edit Summary Information
Interfaces:

User Interface
Stimulus:

DBA selection of the PDB Edit option
Desired Response:

Edits to the unvalidated PDB
Pre-Conditions:

The database is up and running.

The user has privilegesto edit data.

Post-Conditions:
Modified datais stored in the database.

3.4.4.3 PDB Edit Scenario Description

The Project Data Base (PDB) Edit processisinitiated through the selection of the Project Data
Base (PDB) Edit option on the Database Utilities Menu by a user authorized to make edits to the
unvalidated PDB.

The user specifieswhich PDB datato edit through User Interface prompts. Oncethe user has made
datatype selections, the database edit screen isinvoked with the datafields displayed. (Thisscreen
was devel oped using a database manipulation COTS product.)

The database editor screen consists of datafields and database manipulation buttons. The buttons
are used to query datafrom the database, manipul ate recordsretrieved from the database, clear data
from the datafields, and save new or modified data to the database tables. Edit messages are dis-
played on the bottom of the screen.

The editor can be exited by selecting an exit button on the screen.

321 305-CD-049-001

et

T00-670-AD-S0€

FdDbProjectDatabase
myCreateDate
myPDBType
mySCID
myValidFlag FdDbFuilnterface
invokes
FdDbValProjectDatabase FdDbUnvalProjectDatabase -
FdDbEditPDB
myEditType
DeleteData
NextRecord
dited by PreviousRecord FdDbEditLog
RetrieveData
SaveData myChange
myPDBVersion
myTimeStamp
myUserlD
roduces——|
PrintLog
ViewLog
FdDbTelemetryPDB FdDbCommandPDB FdActivityPDB FdConstraintPDB
myTImName myCmdName myActName myConName
myTImSource myCmdSource myActSource myConSource
provides P’S;fﬁfs
valid oy - i i
—val%r?gllg;set conad activity FdDbEditTImScrn FdDbEditCmdScrn FdDbEditActScrn FdDbEditConScrn
mnemonics mnemonics hames
provides valid
command mnemonics
[continued] [continued] [refer to PAS] [continued]

Figure 3.4-1. PDB Edit Object Model

€¢t

T00-6¥0-dD-S0E

FdDbEditTImScrn

FdDbEditTImMnemFid

FdDbEditConstSem
FdDbEGitTImParmsScm FdDbEditDerivedScm
FdDbEditDerivedTImFIds FdDbEGiTImConstFlds
myDrvUnits myConstType
myCompRate myConstValue
mylnputopl myConstDesc
myCalFlagl
myOperl
mylnputOp2
myCalFlag2
myOper2
mylnputOp2
myCalFlaga
myOper3
mylnputop4
myCalFlags
myOper4
mylnputops
myCalFlag5
myOper5
mylnputopé
myCalFlagé
FdDbEditLocationScrn FdDbEditAnalogSern FdDbEditLimitsScm FdDbEditDscStatesSern FdDbEditContxtDepScrn FaDbEdITimDeseSem
- FdDbEGiTImDescFlds
FdDbEditLocationFlds FdDi g P ——— FdDbEdILimitSetFids P E———— FdDbEditContxtDepFlds
myConvNum myContMnem myparmType
myTimPID ConuT, myDNEUINd myLimitSet myMinValue 4 myMjrAssem
myTimType mycomvType myDelavalue myDNEUInd myMaxvalue myDNEUInd myCompName
myPkiApid myDataunits myMinValue myStateText myLowval mySubAssem
myPkiLen mypuEm myMaxValue myHighVal myRTIDName
myPktOffset mYCOnvName mySwitMnem mySCCReqFlg
myCycleld myCZerc myRedLow myPkiDesc
myTiminst micme myRedHigh myTImStDesc
myDataRep myYellowLow
myDeltaTime myCTwo mzveuowmgh
myParmSize myCThree
myCFour
myCFive

Figure 3.4-2.

PDB Edit Object Model

Ve

T00-6¥0-dD-S0E

FdDbEditCmdScrn

FdDbEditCmdParmsScrn -
FdDbEditMemMaskScrn FdDbEditTbiDefScrn
FdDbEditCmdMnemFId
FdDbEditFldDefFIds
FdDbEditMemMaskFlds FdDDEdiTbIDefFIds myFdNum
myFldDesc
myStrtAdd myTbiNum myScaleFact
myTbIMnem
myNumMskWrds myValType
myTbIType
K>—@ myDefltvalue
myStartAdd o
) myValBitSize
myMaxSize N
myTbiDesc myDataUnits
myRgChkFlg
myLowVal
myHighVval
myValOvrFlg
FdDbEditCmdDefScrn FdDbEditCmdVerifyScm FdDbEditPreStateScrn FdDbEditFixCmdScrn FdDbEditvarCmdScrn FdDbEditCmdConScrn FdDbEditCmdDescScrn
0-4 1-33 0-10
" " FdDbEditCmdDescFld:
FdDbEditCmdDefFlds FdDbEditCmdVerifyFids FdDbEditPreStateFlds FdDbEditFixCmdFlds FdDbEditvarCmdFids omdbeseT®
myCmdPID myCevMnem myPrereqMnem myWrdNum mySubfldName mggggzﬁ:;qe
myCmdType myDNEUInd myDNEUInd myDataValue myDefitvalue mySubAssem
myCmdLen myLowVal myLowval mySubfidLen Y. "
myRTName myHighval myHighval mySrcFirstBit myCmdStDesc
myRTSubadd myTimeOut myDestFirstBit
myCmdDest myDestLastBit
myWordCnt
myWordType
mySafetyLvl
0-8
FdDbEditVarStateFlds
myMinVal
myMaxVal
myStateText

Figure 3.4-3. PDB Edit Object Model

qc€

T00-6¥0-dD-S0E

FdDbEditConScrn

FdDbEditCmdConScrn

FdDbEditActConScrn

[refer to PAS]

FdDbEditTriggerFiq FdDbEditHardSoftFlagFI
myTrigger myHardSoftFlag

FdDbEditPreRuleScrn | FdDbEditPostRuleScrn | FdDbEditBitRuleScrn FdDbEditOffsetRuleScrn |FdDbEditTeIemetwRuleScrn FdDbEditNoExistRuleScrmn FdDbEditScalarRuleScrn
:dDbEdi::r6$uleFld IDbEdItPOSRUIGFI FdDbEditBitRuleFlds FADbEditOffsetFl HdDbEditTelemetryRuleFIfi dDbEditNoExistRuleF| FdDbEditScalarRuleFlds

myMaxTime - myComparisonBits myText myExcluder myComparisonValue

myMinTime rmnym;ﬂ:;": myDataField myOffset Y myDataField

myExcluder myExcluder myNotFlag mySubfieldName

V! mySubfieldName myQOperator

1+ 1+ A

FdDbEditSatisfier FdDbEditPacifier
mySatisfier myPacifier

FdDbEditRepeatAfterRuleScrn FdDbEditNoCmdsBeforeRuleScrn| FdDbEditNoCmdsAfterRuleScrn|

|FdDbEditNuRtCmdsRuIeScrn

0-10 0-10

FdDbEditDataFieldFids

myNumber
mySubfieldName
myvalue

1+

dDbEditComparisonBit§

myBitLocation
myValue

Figure 3.4-4. PDB Edit Object Model

9¢-€

T00-670-AD-S0€

DB

User i i
i Unvalidated Edit
User Interface E%Eﬁ' PDB Log
select Database Utilities >
Menu from FUI
<&—Database Utilities Menu displayed—
select PDB Edits from >
the Database Utilities Menu
f—————————————invoke the PDB editor scr >>i
<< display PDB Edits scre
nter new d >>
nter dataf selection criteria (name/mnemonic) for edit$ or delet >>i
<< display retrieved dat
make edits to change dat: >
<< display table level validation error:
lect delete d >>f
ommit dit: >>i
update edit|log- >>
<< urn edit statu:
lect cancel >>
<< reen figlds cleared
f——————————select exit PDB Reporting screeR——m————————————— >4
<< it PDB Edits Screer
select exit Database, >
Utilities Menu
<<—exit Database Utilities Menu——

Figure 3.4-5. PDB Edit Event Trace

LC-€

T00-670-AD-S0€

Wait for FUI
S~ to initiate the

Database Utilities
Menu

other utility selected from menu/
exit menu selected/ PDB Edits option exited

menu exited

Wait for

Database Utilities s~.[DatabaseUtilites PDB Edits selected/ Wait for
Menu displayed Menu edit options displayed Edit options
selection selection

PDB Edit option selected/
database editor invoked

cancel screen selected/
edits fields cleared

exit screen selected/
database editor exited

Wait for edits
and/or database
manipulation
commands

Database manipulation
commands selected .
(search,commit,delete)/ screen edits made/
command executed and changes validated
status displayed against database
table level constraints

and errors displayed

Figure 3.4-6. PDB Edit State Diagram

3.4.5 PDB Edit Data Dictionary

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

FdDbEditActScrn
The Edit Activity Screen class provides the user interface window for
editing the activity PDB.
FdDbEditAnalogFlds
The Edit Analog Fields class provides the fields associated with the
telemetry parameter analog definitions for editing.
FdDbEditAnalogScrn
The Edit Analog Screen class provides the user interface window for
editing the telemetry parameter anal og definitions.
FdDbEditBitRuleFlds
The Edit Bit Rule Fields class provides the fiel ds associated
with the command constraint bit rule definitions for editing.
FdDbEditBitRuleScrn
The Edit Bit Rule Screen class provides the user interface window
for editing the command constraint bit rule definitions.
FdDbEditCmdParmsScrn
The Edit Command Parameters Screen class provides the user interface
window for editing the command parameter definitions.
FdDbEditCmdDescFlds
The Edit Command Description Fields class provides the fields associated
with the command parameter description definitions for editing.
FdDbEditCmdDescScrn

The Edit Command Description Screen class provides the user interface
window for editing the command parameter description definitions.

3-28 305-CD-049-001

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

FdDbEditCmdConfFlds

The Edit Command Constraint Fields class provides the fields associated
with the command parameter constraints for editing.

FdDbEditCmdConScrn

The Edit Command Constraints Screen class provides the user interface
window for editing the command parameter constraint definitions.

FdDbEditCmdDefFlds

The Edit Command Definition Fields class provides the fields associated
with the command parameter definitions for editing.

FdDbEditCmdDefScrn

The Edit Command Definitions Screen class provides the user interface window

for editing the command parameter definitions.

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

FdDbEditCmdDescFlds

The Edit Command Description Fields class provides the fields associated
with the command parameter description definitions for editing.

FdDbEditCmdDescScrn

The Edit Command Description Screen class provides the user interface
window for editing the command parameter description defintions.

FdDbEditCmdMnemFId

The Edit Command Mnemonic Field class provides the field associated
with the command mnemonic for editing.

FdDbEditCmdScrn

The Edit Command Screen class provides the user interface window for
editing the command PDB.

FADbEditCmdV erifyFlds

The Edit Command Verify Fields class provides the fields associated
with the command parameter verify definitions for editing.

3-29 305-CD-049-001

Class Name;

Description:

Class Name;

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

FdDbEditCmdVerifyScrn
The Edit Command Verify Screen class provides the user interface
window for editing the command parameter verify definitions.
FdDbEditComparisonBitsFlds
The Edit Comparison Bits Fields class provides the fiel ds associated with
the command constraint comparison bits definition associated with a
symbol defintion for editing.
FdDbEditConScrn
The Edit Constraint Screen class provides the user interface window for
editing the constraint PDB.
FdDbEditContxtDepFlds
The Edit Context Dependent Fields class provides the fields associated
with the telemetry parameter context dependent definitions for editing.
FADbEditContxtDepScrn
The Edit Context Dependent Screen class provides the user interface
window for editing the telemetry parameter context dependent definitions.
FdDbEditDataFieldFlds
The Edit Data Field Fields class provides the fiel ds associated with the

command constraint data fields definition associated with aprerule or a
post rule for editing.

FdDbEditDeltaFlds

The Edit Delta Limit Fields class provides the fields associated with the
telemetry parameter delta limit definitions for editing.

FdDbEditDerivedTImFlds

The Edit Derived Telemetry Fields class provides the fields associated
with the derived telemetry definitions for editing.

3-30 305-CD-049-001

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Attributes:

Class Name:

Description:

FdDbEditDerivedTImScrn

The Edit Derived Screen class provides the user interface window for
editing the derived telemetry definitions.

FdDbEditDscStateFlds

The Edit Discrete State Fields class provides the fields associated with the
telemetry parameter discrete state definitions for editing.

FdDbEditDscStatesScrn

The Edit Discrete States Screen class provides the user interface window
for editing the telemetry parameter discrete state definitions.

FADbEditFixCmdFIds

The Edit Fixed Command Fields class provides the fields associated
with the command parameter fixed command definitions for editing.

FADbEditFixCmdScrn

The Edit Fixed Command Screen class provides the user interface
window for editing the command parameter fixed state definitions.

FdDbEditHardSoftFlagFId

The Edit Hard Soft Flag Field class provides the field associated
with the command constraint hard/soft flag for editing.

myHardSoftFl ag: string

Description: hard/soft flag identifies the hard/soft flag defined for the
specifiec command constraint

FADbEditLimitSetFlds

The Edit Limit Set Fields class provides the fields associated with the
telemetry parameter limit set definitions for editing.

3-31 305-CD-049-001

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name:

Description:

FADbEditLimitsScrn
The Edit Limits Screen class provides the user interface window for
editing the telemetry parameter limits definitions.

FdDbEditL ocationFlds

The Edit Location Fields class provides the fields associated with the
Telemetry Parameter Location definitions for editing.

FdDbEditL ocationScrn

The Edit Location Screen class provides the user interface window for
editing the Telemetry Parameter L ocation definitions.

FdDbEditMemM askFlds

The Edit Memory Mask Fields class provides the fields associated
with the command memory mask definitions for editing.

FdDbEditMemMaskScrn

The Edit Memory Mask Screen class provides the user interface window
for editing the telemetry memory mask definitions.

FdDbEditPacifier

The Edit Pacifier class provides the field associated
with the command post rule constraint pacifier for editing.

FdDbNoCmdsAfterRuleFlds

The Edit No Commands After Rule Screen class provides the user
interface window for editing the command constraint no
commands after rule offset rule.

FdDbNoCmdsBeforeRuleFlds

The Edit No Commands Before Rule Screen class provides the user
interface window for editing the command constraint no
commands before rule offset rule.

3-32 305-CD-049-001

ClassName: FdDbEditNoEXxistRuleFld
Description: The Edit No Exist Rule Fld class provides the field associated
with the command constraint no exist rule definition for editing.
ClassName: FdDbEditNoExistRuleScrn
Description: The Edit No Exist Rule Screen class provides the user interface windowfor edit-
ing the command constraint no exist rule definitions.
ClassName: FdDbNoRTCmdsRuleScrn
Description: The Edit No Real-time Commands Rule Screen class provides the user

interface window for editing the command constraint no real-time commands
rule offset rule.

ClassName: FdDbEditOffsetFId

Description: The Edit Offset Field class provides the field associated with the command
constraint offset rules for editing.

ClassName: FdDbEditOffsetRuleScrn

Description: The Edit Offset Screen class provides the user interface window
for editing the command constraint offset rule definitions.

ClassName: FdDbEditPDB

Description: The Edit PDB class represents the edit screen for editing the PDB
data definitions.

Attributes:
myEditType: string
Description:edit type indicates the type of data being edited
(telemetry, commmand, activity, constraint)
Operations.

FdDbPDBEdit :: DeleteData

Description:the operation to delete the record associated with the
data on the screen

FdDbPDBEdit :: NextRecord

3-33 305-CD-049-001

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Description:the operation to display the next record in the
retrieval buffer

FdDbPDBEdit :: PreviousRecord

Description:the operation to display the previous record in
theretrieval buffer

FdDbPDBEdit :: RetrieveData

Description:the operation to retrieve data from the database for
the data criteria specified on the screen

FADbPDBEdit :: SaveData
Description:the operation to save data to the database that has
been entered on the screen

FdDbEditPreRuleFlds

The Edit Pre Rule Fields class provides the fields associated
with the command constraint pre rule definitions for editing.

FdDbEditPreRuleScrn

The Edit Pre Rule Screen class provides the user interface window
for editing the command constraint pre rule definitions.

FdDbEditPostRuleFlds

The Edit Post Rule Fields class provides the fields associated

with the command constraint post rule definitions for editing.

FdDbEditPostRuleScrn

The Edit Post Rule Screen class provides the user interface window
for editing the command constraint post rule definitions.

FdDbEditPreStateFlds

The Edit Prerequisite State Fields class provides the fields associated
with the command parameter prerequisite state definitions for editing.

3-34 305-CD-049-001

Class Name;

Description:

Class Name;

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

FdDbEditPreStateScrn
The Edit Prerequisite State Screen class provides user interface
window for editing the command parameter prerequisite state definitions.
FdDbEditRepeatAfterRuleFlds
The Edit Repeat After Rule Field class provides the field associated with
the command constraint repeat after rule definition associated with
an offset rule for editing.
FdDbEditScalarRuleFlds
The Edit Scalar Rule Fields class provides the fields associated with
the command constraint scalar rule definitions for editing.
FdDbEditScalarRuleScrn
The Edit Scalar Rule Screen class provides the user interface
window for editing the command constraint scalar rule definitions.
FdDbEditSatisfier
The Edit Satisfier class provides the field associated
with the command pre rule constraint satisfier for editing.
FADbEditTblDefFlds
The Edit Table Definition Fields class provides the fields associated
with the command table definitions for editing.
FADbEditThIDefScrn
The Edit Table Definitions Screen class provides the user interface
window for editing the telemetry table definitions.
FADbEditTImConstFlds

The Edit Telemetry Constant Fields class provides the fields associated
with the telemetry constants defintions for editing.

3-35 305-CD-049-001

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Attributes:

FADDbEditTImConstScrn

The Edit Constant Screen class provides the user interface window for
editing the telemetry constant definitions.

FADDbEditTImDescFlds

The Edit Telemetry Description Fields class provides the fields associated
with the telemetry parameter description definitons for editing.

FADDbEditTImDescScrn

The Edit Telemetry Description Screen class provides the user interface
window for editing the telemetry description definitions.

FADbEditTImParmsScrn

The Edit Telemetry Parmeters Screen class provides the user interface
window for editing the telemetry parameter definitions.

FdDbEditLog

The Edit Log class represents arecord of edits made to the PDB.

myChange: string

Description the type of edit performed on the PDB information.
myPDBYV ersion: integer

Description the current version of the PDB.

myTimeStamp: string

Description the date and time of the change made to the PDB.
myUserID: string

Description the identification of the user making changes to the PDB.

3-36 305-CD-049-001

Operations:

FdDbEditLog::PrintLog

Description: operation to print the edit log.

FdDbEditLog::ViewLog

Description: operation to view the edit |og.

Class Name:

Description:

Class Name:

Description:

FdDDbEditTImScrn

The Edit Telelmetry Screen class provides the user interface window for
editing the telemetry PDB.

FdDbEditTImParmScrn

The Edit Telelmetry Parameter Screen class provides the user interface windowfor

editing the telemetry parameter definitions.

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

FdDbEditTelemetryRuleFld
The Edit Telemetry Field class provides the field associated
with the command constraint telemetry rule definitions.
FADDbEditTelemetryRuleScrn
The Edit Telemetry Screen class provides the user interface window
for editing the command constraint telemetry rule definitions.
FADDbEditTImScrn
The Edit Telemetry Screen class provides the user interface window
for editing the telemetry definitions.
FdDbEditTriggerFid
The Edit Trigger Field class provides the fields associated
with the command trigger for editing command constraint definitions.
FADbEditVarCmdFlds

The Edit Variable Command Fields class provides the fields associated
with the command paremater variable command definitions for editing.

3-37 305-CD-049-001

Class Name: FdDbEditVarCmdScrn

Description: The Edit Variable Command Screen class provides the user interface
window for editing the variable command parameter definitions.

ClassName: FdDbEditVarStateFlds

Description: The Edit Variable State Fields class provides the fiel ds associated
with the command parameter variable state definitions for editing.

3.5 PDB Report

3.5.1 PDB Report Context
Refer to Section 3.2.1.

3.5.2 PDB Report Interfaces
Refer to Section 3.2.2.

3.5.3 PDB Report Object Model

FdDbReportPDB represents the database reporting interface class to generate, view, or print re-
portson the AM-1 Project Database (PDB). The FADbV a ProjectDatabase provides datato the Fd-
DbReportPDB class. (The FdDbVaProjectDatabase class is derived from the
FdDbProjectDatabase class and is described in Section 3.2.) The FdDbReportPDB class is made
up of the FADbTImRpt, FADbCmdRpt, FADbA ctRpt, and FdADbConRpt subclasses. The FADbRe-
portPDB class provides the capability to view or print existing reports, or invoke a reporting tool
to generate areport.

3-38 305-CD-049-001

6E-€

T00-670-AD-S0€

FdDbProjectDatabase
mySCID
myCreateDate
myPDBType
myValidFlag
FdDbFuilnterface
FdDbUnvalProjectDatabase FdDbValProjectDatabase .
invokes
reported
by
FdDbReportPDB
myRptType
PrintRpt
ViewRpt
GenerateRpt
FdDbTelemetryPDB FdDbCommandPDB FdActivityPDB FdConstraintPDB
myTImName myCmdName myActName myConName
myTImSource myCmdSource myActSource myConSource
FdDbTIMRpt | FdDbCmdRpt | | FdDbACtRpt | | FdDbConRpt
provides provides
provides valid valid
——valid telemetry— command E':glrlT\]lg;’
mnemonics mnemonics [continued] [continued] [continued] [continued]
provides valid

command mnemonics

Figure 3.5-1. PDB Report Object Model

FdDbTImRpt
myRptName
myRptType
FdDbDerived TImRpt FdDbTImConstRpt
FdDbTImPacketRpt s e— TyConstMnem
myPktApid myDrvUnits myConstType
myPktLen myCompRate myConstValue
myPkiDesc mylnputOp1 myConstDesc
myCalFlagl
myOperl
mylnputOp2
myCalFlag2
myOper2
mylnputop3
myCalFlag3
myOper3
mylnputOp4
myCalFlag4
myOperd
mylnputops
myCalFlag5
FdDbTImParmRpt :)y/:zzi:gpﬁ
myTimMnem myCalFlagé
myDataRep
myTiminst
myPKiOffset
myParmSize
myCyclelD
myDeltaTime
FdDbTImDescRpt FdDbAnalogTImRpt FdDbDscStateRpt
myTImPID mylnputFmt yMaxvalie
myMjrAssem myConvType myMinValue
myCompName myConvNum myStateText
mySubassem myScaleFactor
myRTIDName myDataUnits
myTimType
myParmType
mySCCReqFlg
myTimDesc
14
FdDbCalCurveRpt FdDbContxtDepRpt FdDbParmLimitsRpt
myConvNum myCnixtMnem myDNEUING
myConvName myDNEUInd
myCZero myLowVal
myCOne myHighVal
myCTwo
myCThree
myCFour
myCFive
b
FdDbDeltaLimitRpt FdDbLimitSetRpt
myDeltaValue myLimitSet
mySwitMnem
myMinValue
myMaxValue
myRedLow
myYellowLow
myYellowHigh
myRedHigh

3-40

FdDbPartialTImRpt

myTimMnem

Figure 3.5-2. PDB Report Object Model

305-CD-049-001

€

T00-670-AD-S0€

FdDbPartialCmdRpt

myCmdMnem

FdDbCmdRpt
myCmdRptName
myCmdRptDate
FdDbCompleteCmdRpt
FdDbMemMaskRpt FdDbTbIDefRpt FdDbFldDefRpt
FdDbCmdParmRpt myStrtAdd myThbINum myFIldNum
myCmdMnem myNumMskWrds myThIMnem myFldDesc
myCmdPID myTbIType myScaleFact
myCmdType myStartAdd K>—@ myValType
myRTName myMaxSize myDefltValue
myRTSubAdd myTblDesc myValBitSize
myCmdDest myDataUnits
myWordCnt myRgChkFlg
myWordType myLowVal
myCmdLen myHighval
mySafetyLvl myValOvrFlg
0-4 1-33 0-10
FdDbPreStateRpt FdDbCmdVerifyRpt FdDbFixCmdRpt FdDbVarCmdRpt FdDbCmdConRpt FdDbCmdDescRpt
myPrereqMnem myCevMnem myWrdNum mySubfldName myConRule myMjrAssem
myDNEUInd myDNEUInd myDataValue myDefltValue myCompName
myLowVal myLowVal mySubfldLen mySubAssem
myHighVal myHighval mySrcFirstBit myCmdStDesc
myTimeOut myDestFirstBit
myDestLastBit
0-8
FdDbVarStatesRpt
myMinVal
myMaxVal
myStateText

Figure 3.5-3. PDB Report Object Model

cv-€

T00-670-AD-S0€

FdDbACtRpt

myActRptName
myActRptDate

FdDbActDefRpt

myActName
myOwner
myResID
myStrtTrig
myOvrdFlag
myStrtTrigDelta
myMinDur
myDuration
myDurOvrdFlag
myEntryModes
myMode
myExitMode

FdDbActCmdRpt

myCmdMnem
mySSind
myDeltaTime
myCmdType

FdDbActCmdParmRpt

myParmName
myLowLimit
myHighLimit
myValidvals
myDefaultVal
myModFlag

FdDbCompleteActRpt

FdDbPartialActRpt

FdDbActConRpt

myConRule

FdDbCmdConRpt

myConRule

Figure 3.5-4. PDB Report Object Model

myActName

ev-€

T00-670-AD-S0€

FdDbConRpt

myConRptName
myConRptDate

FdDbActMnemRpt

myActMnem

FdDbActConRpt

myConRule

Figure 3.5-5. PDB Report Object Model

FdDbCmdMnemRpt

FdDbCompleteConRpt

FdDbPartialConRpt

myCmdMnem

FdDbCmdConRpt

myConRule

myConType

3.5.4 PDB Report Dynamic Model
3.5.4.1 PDB Report Scenario Abstract

3.5.4.2 PDB Report Summary Information
Interfaces:

User Interface
Stimulus:

DBA selection of the PDB Report option from the Database Utilities Menu
Desired Response:

Edits to the unvalidated PDB
Pre-Conditions:

The database is up and running.

The database isinitialized.

The PDB definitions are ingested.

The PDB isvalidated.

Post-Conditions:
None

3.5.4.3 PDB Report Scenario Description

The Project Data Base (PDB) Report Generation process is initiated through the selection of the
Project Data Base (PDB) Report Generation option on the Database Utilities Menu.

The user specifies which PDB data to report on based on User Interface prompts. Once the user
has made data type selections, the database reporting tool isinvoked. (The report is generated us-
ing a database COTS product.)

Oncethereport is generated, the database reporting tool is exited and a status message is displayed
on the screen. The report may then be viewed or printed by selecting the appropriate options off
of the User Interface screen.

The PDB Report Generation screen is exited by selecting an exit button on the screen or by select-
ing another option off of the Database Utiltiies Menu.

3-44 305-CD-049-001

Sr-¢

T00-670-AD-S0€

Database

User Reports Validated
User Interface D aoe
Printer Tool PDB
select Database Utilities >
Menu from FUI
< Database Utilities
Menu displayed
select PDB Reporting from >
the Database Utilities Menu
I<&——— display PDB Reporting screen ————
select Generate Reports option ———>>
select partial or complete
report option >
enter name/mnemonic >
info for a partial report
invoke D Reports Tool >>
<< return report generation status
select view option ———>>f
I<&———report displayed to screen ———
select print option >>
<< eturn pfint statu:
————— select exit PDB Reporting ————>>{
[<&—— exit PDBReporting screen
select exit >
Database Utilities Menu
< exit Database
Utilities Menu

Figure 3.5-6. PDB Report Event Trace

ov-€

T00-670-AD-S0€

other utility selected from menu/
PPR i i ited

exit menu selected/
menu exited

Wait for FUI

Report Print __>(:)

to initiate the - Wait for PDB Reporting selected/ Wait for
Database Database U|t|||t|es i report options displayed s~| Report options selected
Utilities Menu Menu displayed | (print,view,generate) selection
selection
Report View
selected

Report Generation selected/
Report Tool invoked

report status displayed/
Report Tool exited

Wait for
report status
information

Figure 3.5-7. PDB Report State Diagram

3.5.5 PDB Report Data Dictionary
Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database

Schema Specifications for specific details supporting the design of PDB processing.
ClassName: FdDbA ctConRpt
Description: The Activity Constraint Report provides the activity constraints on an
Activity Report.
ClassName: FdDbActCmdRpt
Description: The Activity Definition Report class provides the activity command definitionpor-
tion of the Activity report..
ClassName: FdDDbActMnemRpt
Description: The Activity Mnemonic Report class represents the list of Activity
Mnemonics on the Constraint Report.
ClassName: FdDbACctRpt
Description: The Activity Report class represents the Activity Report.
Attributes:
myActRptName: string
Description: the name given to the report
myActRptDate: string

Description: the date the report was generated

ClassName: FdDbCmdConRpt

Description: The Command Constraint provides the command constraints on an
Activity Report

ClassName: FdDDbA ctCmdParmRpt

Description: The Activity Command Parameter Report provides activity Command
Parameter portion of the Activity Report.

3-47 305-CD-049-001

ClassName: FdDbActDefRpt
Description: The Activity Definition Report class provides the activity definition data
of an Activity Report.
ClassName: FdDbCmdM nemRpt
Description: The Command Mnemonic Report class represents the list of Command
Mnemonics on the Constraint Report.
ClassName: FdDbCmdRpt
Description: The Command Report class represents the Command Report.
Attributes:
myCmdRptName: string
Description: the name given to the report
myCmdRptDate: string

Description: the date the report was generated

ClassName: FdDbCompleteActRpt

Description: The Complete Activity Report class represents a complete ActivityReport, listing
all information about all activities.

ClassName: FdDbCompleteCmdRpt

Description: The Complete Command Report class represents a complete Command Report,
listing al information about all commands.

ClassName: FdDbCompleteConRpt

Description: The Complete Constraint Report class represents a complete ConstraintReport,
listing al information about all constraints.

ClassName: FdDbCompleteTImRpt

Description: The Complete Telemetry Report class represents a complete TelemetryReport,
listing al information about all telemetry mnemonics.

3-48 305-CD-049-001

ClassName: FdDbConRpt
Description: The Constraint Report class represents the Constraint Report.
Attributes:

myActRptName: string

Description: the name given to the report

myActRptDate: string

Description: the date the report was generated

ClassName: FdDbPartia ActRpt

Description: The Partial Activity Report class represents a partial Activity Report, correspond-
ing to the activity name specified.

ClassName: FdDbPartial CmdRpt

Description: The Partial Command Report class represents a partial Command Report, corre-
sponding to the command mnemonic specified.

ClassName: FdDbPartial ConRpt

Description: The Partial Constraint Report class represents a partial Constraint Report, corre-
sponding to the constraint type specified.

Attributes:
myConType: string

Description: the type of constraint report, command or activity

ClassName: FdDbPartia TImRpt

Description: The Partial Telemetry Report class represents a partial Telemetry Report, corre-
sponding to the telemetry mnemonic specified.

3-49 305-CD-049-001

Class Name:
Description:

Attributes:

FADbTImRpt

The Telemetry Report class represents the Telemetry Report.

myTImRptName: string

Description: the name given to the report

myTImRptDate: string

Description: the date the report was generated

Class Name:

Description:

Class Name;

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

Class Name:

Description:

FdDbAnalogTImRpt

The Analog Telemetry Report class represents the anal og telemetry
information associated with atelemetry parameter on a Telemetry
Report.

FdDdCmdDescRpt

The Command Description Report class represents the command
description information associated with a command parameter
for a Command Report.

FDbCmdParmRpt

The Command Parameter Report class represents the command parameter
information on the Command Reprot.

FADbCmdV erifyRpt

The Command Execution Verification (CEV) Report class represents
the CEV information for a command parameter on a Command Report.

FdDbDeltaLimitRpt

The Delta Limit Report class represents the delta limit assoicated with
atelemetry parameter limit on a Telemetry report.

FdDbParmLimitsRpt

The Parameter Limits Report class represents the limits assoicated
with atelemetry parameter on a Telemetry report.

3-50 305-CD-049-001

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Attributes:

FdDbDscStateRpt

The Discrete States Report class represents the discrete state
information for atelemetry parameter on a Telemetry Report.

FdDbFixCmdRpt

The Fixed Data Word Report class represents fixed command information

associated with a command parameter on a Command Report.

FDbFIdDefRpt

The Table Field Definition Record represent the field defintion data for
the table definition data on the Command Report.

FdDbLimitSetRpt

The Limit Set Report class represents the limits set information
associated with atelemetry parameter limit on a Telemetry Report.

FdDbMemM askRpt

The Memory Masking Definition Report represents the memory mask
information on the Command Report.

FdDbPreStateRpt

The Prerequisite State Report class represents the prerequisite state
information for a command parameter on a Command Report.

FdDbReportPDB

The Report PDB class represents the PDB Report.

myRptType: string

Description:report type indicated the type of report
(telemetry, command, activity, or constraint)

3-51

305-CD-049-001

Operations:

Class Name:

Description:

Class Name:

Description:

Class Name;

Description:

Class Name;

Description:

Class Name;

Description:

Class Name:

Description:

FdDbReportPDB :: PrintRpt

Description:the operation to print a generated report
FdDbReportPDB :: ViewRpt

Description:the operation to view a generated report
FdDbReportPDB :: GenerateRpt

Description:the operation to generate a report

FADbTbIDefRpt

The Table Definition Record represents the table definition
information on the Command Report.

FdDbTImDescRpt

The Telemetry Description Report class represents the telemetry
description information assoicated with atelemetry parameter
on a Telemetry Report.

FdDbTImPacketRpt

The Telemetry Packet Report represents the telemetry packet information
on a Telemetry Report.

FdDbTImParmRpt

The Telemetry Parameter Report class represents the telemetry
parameter information on a Telemetry Report.

FDbVarCmdRpt

The CommandV ariable Command Report class represents the variable
command information associated with a command paramater on a
Command Report.

FdDbV arStatesRpt

The Variable States Report class represents the variable states for
avariable command assoicated with a command parameter for a
Command Report.

3-52 305-CD-049-001

3.6 Operational Data Generation

3.6.1 Operational Data Generation Context
Refer to Section 3.2.1

3.6.2 Operational Data Generation Interfaces
Refer to Section 3.2.2

3.6.3 Operational Data Generation Object Model

FdDDbOperational Datarepresentsthe datagenerated and maintained by the DM S. Thisinformation
is used to support FOS operations. It is made up of telemetry, command, constraint and activity
data (FdDbTelemetryOpData, FdADbCommandOpData, FADbConstraintOpData, FADbA ctivity-
OpData). Operational data may be maintained as database tables or in UNIX files.

Each of the operational data generation subclasses (FADbTImOpDataGen, FADbCmdOpDataGen,
FdDbConOpDataGen, FADbActOpDataGen) is derived from the FdADbGenOpData base class.
They are responsible for controlling the conversion of each type of PDB data into an operational
format. Upon acceptance of the validated PDB, the DBA will invoke this processto produce anew
version of the operational data.

The class FADbTelemeteryOpData represents the information that is used to support telemetry pro-
cessing during FOS operations. The FADbFUITIMODF control s the generation of operational data
filesused by the FOS User Interface Subsystem. The class FADbTImSubsysODF providesalisting
of telemetry subsystem names and is made up of the subclass FADbTImSubsysDef. The class Fd-
DbTImMnemODF providesalisting of valid telemetry mnemonics associated with the current ver-
sion of operational telemetry data. It is made up of the subclass FADbTImMnemDef.
FADbSCTIMODF controls the generation of the operational data files used to support telemetry
processing. Theclass FADbTImParmODF is made up of the subclassesthat represent the telemetry
parameter definitions (FADbTImPktDef, FADbTImParmDef, FADbAnaTImDef, FADbDiscTIm-
Def, FdDbConversion, FADbTImLimits, FdDbDeltas, FdDbBndryGrp, FdDbStates).

The class FADbCommandOpData represents the information that is used to support spacecraft
commanding during FOS operations. FADbCEV ODF controls the generation of the operational
command execution verification file for the Command Management Subsystem. It is made up of
the subclass FADbCEVDEF. An instance of this subclass contains the execution verification cri-
teria for a command mnemonic. FADbCmdODF controls the generation of the operational com-
mand parameter file used to support Real-time commanding. It is made up of the subclasses
FdDbCommandParm, FdDbPreState, FdDbFixData, FdDbVarData, FdDbVarConv, FdDb-
VarStates. The class FADbOpCmdDB controls the creation of the operational database tables for
commanding. The Planning & Scheduling Subsystem and Command Management Subsystem in-
terface directly with the FOS Database during operations and must have accessto thisinformation.
The subclass FADbCommandODT represents the command operational data tables which is made
up of the class FdDbCommandPDB.

The class FADbOpA ctDB controls the creations of the operational database tablesfor activity def-
initions. The Planning & Scheduling Subsystem and the Command M anagement Subsystem inter-
face directly with the FOS Database during operations and must have access to this information.

3-53 305-CD-049-001

The subclass FADbACctivityODT represents the activity operational data tables which is made up
of the class FADbActPDB.

The class FADbOpConDB controls the creation of the operational database tables for constraint
definitions. The Planning & Scheduling Subsystem and the Command Management Subsystem
interface directly with the FOS Database during operations and must have access to thisinforma-
tion. The subclass FADbConstraintODT represents the constraint operational data tableswhichis
made u p of the class FADbConstraintPDB.

3.6.4. Operational Data Generation Dynamic Model

3.6.4.1 Operational Data Generation Scenario Abstract

The Operational Data Generation scenario describes the generation of operational data tables and
files used to support FOS operations.

3.6.4.2 Operational Data Generation Summary Information
Interfaces:
None
Stimulus:
DBA selection of the operational data generation option from the Database Utilities menu
Desired Response:

The creation of the operational data tables and files from telemetry, command, constraint
and activity PDB.

Pre-Conditions:
FOS Database initialized.
PDB validated.
Post-Conditions:
None

3-54 305-CD-049-001

GG-€

T00-6¥0-dD-S0E

—< myCreateDate

FdDbProjectDatabase

mySCID

myPDBType
myValidFlag

converted by

LX
FdDbUnvalProjectDatabase | | FdDbValProjectDatabase |
FdDbTelemetryPDB FdDbCommandPDB FdActivityPDB FdConstraintPDB
myTImName myCmdName myActName myConName
myTImSource myCmdSource myActSource myConSource
provides provides
ovides valid valid
valid telemetry command activity
mnemonics mnemonics names
provides valid

command mnemonics

invokes

FdDbOperationalData

mySCID
myOpDataType
myOpDataVersion

FdDbGenOpData
produces
[Continued]
FoDbOpDataFile FoDbOpDataTable
[Continued]
FdDbTelemetryOpData FdDbCommandOpData FdDbActivityOpData FdDbConstraintOpData

[Continued]

Figure 3.6-1. Operational Data Generation Object Model

9G-€

T00-670-AD-S0€

FdDbGenOpData

GenOpData

FdDbTImOpDataGen FdDbCmdOpDataGen FdDbConOpDataGen FdDbActOpDataGen
GenSCTImODF GenCmdODF CreOpConDB CreOpActDB
GenTImMnemODF GenCEVODF

CreOpCmdDB

Figure 3.6-2. Operational Data Generation Object Model

FdDbTelemetryOpData

FdDbFUITIMODF FdDbSCTIMODF

FdDbTImParmODF FdDbDNTIMODF
FdDbTImSubsysODF FdDbTImMnemODF
FdDbTImPktDef FdDbDNVTImDef
myPktApid myDrvMnem
FdDbTImSubsysDef FdDbTImMnemDef myPktLen myDrvUnits
myCompRate
mySCID myTImSubsys mylnpUOpL
myTimSubsys myTimMnem myCalFiagl
myOperL
mylnputop2
myCalFlag2
FdDbTImParmDef myOper2
mylnputop3
myTImPID myCalFlag3
myTimMnem myOper3
myTImSubsys mylnputOp4
myCyclelD myCalFlag4
myTiminst myOper4
myPktOffset mylnputOp5
myParmSize myCalFlags
myDeltaTime myOpers
myDataRep mylnputopé
myCalFlagé
FdDbAnaTlmDef FdDbDiscTImDef
mylnputFmt
myDataUnits
FdDbConversion FdDbTImLimits FdDbDStates
myConvSet myMinValue
myConvType myMaxValue
myCzero myStateText
myCOne
myCTwo
myCThree
mycFour FdDbDeltas FdDbBndryGrp
myCFive
myCSix myDNEUInd myLimitSet
myCSeven myDeltaValue myDNEUInd
mySwitMnem myRedLow
myMinvalue myYellowLow
myMaxValue myYellowHigh
mySwitMnem
myRedHigh
mySwitMnem
myMinValue
myMaxValue

Figure3.6-3. Operational Data Generation Object Model

3-57 305-CD-049-001

8G-€

T00-6¥0-dD-S0E

FdDbCommandOpData

Figure 3.6-4. Operational Data Generation Object Model

myCmdVersion
FdDbCEVODF FdDbCmdJODF FdDbOpCmdDB
SetCommandParm
GetCommandParm
FdDbCEVDef FdDbCommandParm FdDbCommandODT
myCmdMnem myCmdMnem myCmdName
myCEVPID myCmdSubsys
myCEVType myCmdType
myCEVRange myCriticalFlg
myCEVTimeOut myCEVPID
myCEVType
myCEVRange
myCEVTimeOut
myCmdDest
myCmdDesc
myCmdLen
myNumPreState
myNumFixData
myNumVarData
FdDbPreState FdDbFixData FdDbVarData
myPrereqPID myDataValue mySubmnem
myPrereqType myDestFirstBit
myPrereqRange myDestLastBit
myValueType
myDefltval

0

FdDbVarConv

myCalCurve

Command Operational Data

]

FdDbCommandPDB

myCmdName
myCmdSource

FdDbVarStates

myValueRange
myStateText

FdDbConstraintOpData

FdDbOpConDB
myConName
[)
FdDbConstraintODT FdDbConstraintPDB
o — myConName
myConSource
[Continued]

Figure 3.6-5. Operational Data Generation Object Model

3-59 305-CD-049-001

09-€

T00-670-AD-S0€

FdDbActivityOpData

FdDbOpACtDB

myActName

FdDbActivityODT

FdDbActivityPDB

myActName

myActName
myActSource

Figure 3.6-6. Operational Data Generation Object Model

[Continue]

3.6.4.3 Operational Data Generation Scenario Description

The Operational Data Generation process is initiated through the selection of the operational data
generation option on the Database Utilities menu by the DBA.

The generation of the telemetry operational dataisinvoked first. Telemetry definitions are copied
from the validated PDB within the database and put into aformat useful for telemetry processing.
This information is stored in UNIX files, which include the Telemetry Subsystem ODF, the Te-
lemetry Mnemonic ODF, the Telemetry Parameter ODF and the Derived Telemetry ODF.

Next, the creation of the operational command dataisinvoked. The definitions from the validated
command PDB are copied into the command operational datatables. Additionally, the Command
Execution Verification ODF and the Command Parameter ODF are created by copying the com-
mand definitions from the database tables into a UNIX file.

The constraint and activity operational data generation includes copying the validated constraint
and activity PDB into an operational areafor accessby Planning & Scheduling the Command Man-
agement Subsystems.

Upon compl etion of the generation process anew version of the operational datais made available
by the Data Management Subsystem for use by the FOS Subsystems.

3-61 305-CD-049-001

c9-€

T00-670-AD-S0€

DBA User FdDbGenOpData FdDbTelemetryOpData ~ FdCommandOpData FdDbConstraintOpData FdDbActivityOpData
Interface

select DB Utilities
—Menu from User—>>
Interface

display DB
< UtilitﬁssyMenu

select Operational
—Data Generation—=>{
Option

display
l€«——generation——
options

————complete———>>
option
invoke Operational >
[Data Gepneration
invoke generation
—— of operational —>>{
telemetry data

l<&———eturn gengration status——
displa

< play |
generation status

invoke generation of operational >
commar)d data

53 return generation statu

display
<< generation status

invgke generation of operational >
constraint data
<< return gengration status
display
<< generation status . . . L
ivoke generation of operational activity data >
<< return generation status

display
<< generation status

Figure 3.6-7. Operational Data Generation Event Trace

€9-€

T00-670-AD-S0€

FdDbTelemetryOpData

invoke generation
— of operational
telemetry data for FUI

[<&—— return geng

FdDbFUITIMODF

invoke generation

—— oftelemetry —>>

subsystem ODF

pration status

invoke gen|
telemetry mne

FdDbTImSubsysODF

pration of >
monic ODF

FdDbTImMnemODF

FdDbSCTImODF FdDbTImParmODF

<& return generation status
invoke generation of operational telefnetry data for telemetry processing ———— >
invoke generation of
—— spacecraft telemetry —>>
parameter ODF
<& return ¢ ion status
invoke generati
telemetr)
<& return gengration status

on of derived >
) ODF

Figure 3.6-8. Operational Data Generation Event Trace

FdDbDrvTImODF

FdDbCommandOpData FdDbC

—— invoke generation of CEV ODF —>>{

I<<— return generation status

invoke generation

<< return gen

invok

EVODF FdDbCmdODF

f command ODF ——8M8 >

eration status

e generation of operational command databg

return generation status

Se

FdDbOpCmdDB

Figure 3.6-9. Operational Data Generation Event Trace

3-64

305-CD-049-001

G9-€

T00-670-AD-S0€

FdDbActivityOpData FdDbOpACtDB FdDbConstraintOpData

invoke genertion of the
operational activity database >

I<&<——return generation status

Figure 3.6-10. Operational Data Generation Event Trace

invoke generation of the

operational constraint database

[<€&———return generation status ———

FdDbOpConDB

—>

99-€

T00-670-AD-S0€

Wait for
generation option
selection

Wait for
Database Utilities
Menu option
selection

Wait for FUI
to initialize the
Database Utilities
Menu

Operational Data Generation option
selected/Generation options
displayed

Database Utilities Menu initialized/
Options displayed

Generation
completion
status
displayed

Generation option selected/
invoke process

it button selected

Wait for
generation
completion
status

Figure 3.6-11. Operational Data Generation State Diagram

3.6.5 Operational Data Generation Data Dictionary

Note: Refer to the DFCD for the EOS AM-1 PDB and the FOS Database Design and Database
Schema Specifications for specific details supporting the design of PDB processing.

ClassName: FdDbActOpDataGen

The Activity Operational Data Generation class provides the functional operations needed to gen-
erate the operational constraint data.

Operations.
FADDbA ctOpDataGen:: CreOpActDb
operation to create the operational activity database.

ClassName: FdDbActivityODT

The Activity ODT class represents operational activity database tables used in support of FOS op-
erations for mission planning and spacecraft commanding.

ClassName: FdDbActivityOpData

The Activity Operational Data class contains activity information used during FOS operations to
support the Planning & Scheduling and Command Management Subsystems..

ClassName: FdDbActivityPDB
The Activity PDB class represents the activity definition files needed to support FOS operations.

ClassName: FdDbAnaTImDef

The Analog Telemetry Definition class provides characteristic information about anal og tel emetry
parameters.

ClassName: FdDbBndryGrp

The Boundary Group class contains the red/yellow - high/low limit checking criteria associated
with an analog or discrete telemetry parameter.

Class Name: FADbCEVDef

The CEV Definition class provides the criteria used to verify execution of acommand during FOS
operations.

ClassName: FdDbCEVODF

The CEV ODF class contains command executions verification definitionsin support of the Com-
mand Management Subsystem during FOS operations.

3-67 305-CD-049-001

Class Name: FdDbCmdODF

The Command ODF class contains the command definitions used to support spacecraft command-
ing during FOS operations.

ClassName: FdDbCmdOpDataGen

The Command Operational Data Generation class provides operations used to generate the opera-
tional command data.

Operations.
FdDbCmdOpDataGen::GenCmdODF

Description:operation to generate the command operational data file used in sup-
port of real-time Commanding.

FdDbCmdOpDataGen::GenCEV ODF

Description:operation to generate the command execution verification list for the
Command Management Subsystem.

FdDbCmdOpDataGen::CreOpCmdDB
Descriptionoperation to create the operational command database.

ClassName: FdDbCommandODT

The Command ODT class represents operational command database tables used in support of FOS
operations for the Planning & Scheduling and Command Management Subsystems.

ClassName: FdDbCommandOpData

The Command Operational Data class contains command definitionsin an operational format used
support FOS operations.

Class Name: FDbCommandParm

The Command Parameter class contains an instance of a spacecraft or instrument command which
is used to support real-time commanding of the EOS AM-1 spacecraft.

ClassName: FdDbCommandPDB

The Command PDB class represents the command definition files needed to support commanding
of the EOS AM-1 spacecraft.

ClassName: FdDbConOpDataGen

The Constraint Operational Data Generation class provides the functional operations needed to
generate the operational constraint data.

3-68 305-CD-049-001

Operations:
FdDbConOpDataGen:: CreOpConDb
Description:operation to create the operational constraint database.

Class Name: FdDbConstrantODT

The Constraint ODT class represents operational constraint database tables used in support of FOS
operations.

ClassName: FdDbConstraintOpData

The Constraint Operational Data class contains operational constraint data used in support of FOS
operations.

Class Name: FdDbConstraintPDB

The Constraint PDB represent the constraint definition files needed to support constraint checking
for commands and activities during FOS operations.

ClassName: FdDbConversion
The Conversion class provides the coefficients used to convert raw telemetry values into EUs.

ClassName: FdDbDeltas
The Deltas class provides the delta limit definition for atelemetry parameter

Class Name: FdDbDiscTImDef

The Discrete Telemetry Definition class provides characteristic information about discrete telem-
etry parameters.

ClassName: FdDbDrvTImDef

The Derived Telemetry Definition class contains a simple equations that combine previously de-
fined analogs, discretes, constants and other derived parametersviaarithmetic or logical functions.

ClassName: FdDbDrvTImODF
The Derived Telemetry ODF class contains the derived telemetry parameter definitions.

Class Name: FdDbDState

The Discrete States class contains the association of a single text state to a range of values for a
discrete telemetry parameter.

3-69 305-CD-049-001

ClassName: FDbFixData
The Fixed Data Word class represents a fixed data word associated with a command.

ClassName: FdDbFUITImMODF

The FUI Telemetry ODF class represents the telemetry data files generated to support FOS User
Interface.

ClassName: FdDbGenOpData

The Generate Operational Data class provides an operation responsible for invoking the process
for generating operational data.

Operations.
FdDbGenOpData::GenOpData

Description:operation to generate operational data for mission planning, space
craft commanding and telemetry processing.

ClassName: FdDbOpActDB

The Operational Activity Database class representsthe operational activity information maintained
in table format ina COTS DBMS.

ClassName: FdDbOpCmdDB

The Operational Command Database class represents the operational command information main-
tained in table format ina COTS DBMS.

ClassName: FdDbOpConDB

The Operational Constraint Database class represents the operational constraint information main-
tained in table format ina COTS DBMS.

ClassName: FdDbOpDataFile

The Operational Data File class represents the operational information maintained by the DMSin
aUNIX fileformat.

ClassName: FdDbOpDataGen

The Operational Data Generation class represents the operational information maintained by the
DMSinaUNIX fileformat.

3-70 305-CD-049-001

ClassName: FdDbOpDataTable

The Operational Data Table class represents the operational information maintained by the DMS
in a COTS database product in table format.

ClassName: FdDbOperationalData

The Operationa Data class represents the database tables and UNIX files that are used to support
mission planning, spacecraft commanding and telemetry processing for the FOS.

ClassName: FdDbProjectDatabase

The Project Database class represents the telemetry, command, constraint and activity definitions
files needed to support FOS operations.

ClassName: FdDbPreState

The Prerequisite State Specification Record defines the condition for which atelemetry parameter
associated with a command must occur in order to perform prerequisite state checking.

ClassName: FdDbSCTImODF

The Spacecraft Telemetry ODF class provides the validated telemetry PDB in an operational for-
mat to be used to support telemetry processing.

ClassName: FdDbTelemetryOpData

The Telemetry Operational Data class contains operational telemetry data used in support of FOS
operations.

ClassName: FdDbTelemetryPDB

The Telemetry PDB class represents the telemetry definition files needed to support telemetry pro-
cessing during FOS operations.

ClassName: FdDbTIImLimits
The Telemetry Limits class represents the telemetry limits definitions.

ClassName: FdDbTImMnemDef

The Telemetry Mnemonic Definition class provides the current telemetry mnemonics used during
operations.

371 305-CD-049-001

ClassName: FdADbTImMnemODF

The Telemetry Mnemonic ODF class contains the telemetry mnemonics supporting telemetry op-
erations and is used by the FOS User Interface Subsystem.

ClassName: FdDbTImOpDataGen

The Telemetry Operational Data Generation class provides operations used to generate the opera-
tional telemetry data.

Operations.
FdDbTImOpDataGen::GenSCTIMODF

Description:operation to generate the spacecraft telemetry files for telemetrypro-
cessing.

FADbTImOpDataGen::GenTImMnemODF

Description:operation to generate the telemetry subsystem and mnemonic files to
support FOS User Interface.

ClassName: FdDbTImPktDef

The Telemetry Packet Definition class provides telemetry packet definitions in support of teleme-
try operations.

Class Name: FdDbTImParmDef

The Telemetry Parameter Definition class provides the operational telemetry parameter definition
used to support telemetry decommutation.

Class Name: FdDbTImParmODF

The Telemetry Parameter ODF class providesthe operational telemetry data used to support telem-
etry decommutation.

ClassName: FdDbTImSubsysODF

The Telemetry Subsystem ODF class containstelemetry subsystem information for use by the FOS
User Interface Subsystem.

ClassName: FdDbTImSubsysDef

The Telemetry Subsystem Definition class provides the name of each telemetry subsystem sup-
ported by the spacecraft.

3-72 305-CD-049-001

ClassName: FdDbUnvalProjectDatabase

The Unvalidated Project Database class represents the PDB in a state prior to having validation
performed on it's contents.

ClassName: FdDbValProjectDatabase

The Validated Project Database class represents the PDB in a state after having validation per-
formed on it's contents.

Class Name: FDbVarConv

The Command Variable Conversion class contains the conversion equation associated with vari-
able type command.

ClassName: FDbVarData
The Command V ariable Data class contains the subfiel ds associated with variable type commands.

ClassName: FdDbVarStates
The Variable States class provides the states associated with a subfield.

3.7 DMS Event Processing

The event handler receives all network, system, and operational events. The event handler is re-
sponsible for sending unformatted events to the event archiver at the data server. The event ar-
chiver is responsible for formatting events using the unformatted event and the events database.
The formatted event will contain UTC time of event, event type, event identifier, event message,
instrument identifier, spacecraft identifier, event message, severity, filename where event oc-
curred, and line number of the file. The event archiver will archive the event, multicast the event
so that the event can be viewed by user stations, and initiate procedures (triggers).

The user has the option of configuring incoming and outgoing event filters. Both the event listener
and the event handler will read an event filter configuration file during initialization. Outgoing
event filters prevents the event handler from sending duplicated events over the network (i.e., tim
limits), and incoming event filters directs the event listener to only listen for selected event types.

3.7.1 DMS Event Processing Context

The DM S event processing interfaces with all FOS subsystems and with the MSS, as shown in the
Context Diagram and summarized below.

FOS Applications:

Sends unformatted events to the DMS. The events are formatted and archived by the DMS at
the data server.

MSS:

Sends unformatted events to the DMS. The events are formatted and archived by the DMS at
the data server.

3-73 305-CD-049-001

Receives MSS related eventsfrom the DMS. The DM S uses an events database to determine
which events are to be sent to the MSS.

FOS User Interface:
Receives formatted events from the DMS. The user can select the type of eventsto view.

3.7.2 DMS Event Processing Interfaces

Table 3.7-1. DMS Event Processing Interfaces

Interface Interface Class Interface Class Service Service | Frequency
Service Description Provider User
Event FdEvEventLogger | Sends events to event | DMS All FOS, |Very
Processing handler MSS frequent

3.7.3 DMS Event Processing Object Model

The FdEventL ogger class provides application software away to send eventsto the event handler.
The user callsthe GenEvent operation passing the appropriate parameters whenever an event needs
archived and sent to display. The FdEvVEventL ogger class will create a FOEVEvent class from the
calling parameters and send the FOEVEvent class to the FdEvEventHandler class.

The FdEvEventHandler class routes events to the FdEvEventArchiver. The FdEvEventHandler
class uses the FAEVEventConfig class to determine which events need to be sent to the FdEvVEven-
tArchiver class.

The FdEvEventConfig class contains incoming and outgoing event filters. The user can select the
type of eventsthat need to be sent to the event archiver, and the type of eventsthe user station needs
to listen for.

The FdEvEventArchiver class receives unformatted events from event handlers. The FdEvEven-
tArchiver uses the FdEvEventDb event database class to determine how to format the events. The
formatted events are archived using the FAEvVEventFile class, and multicasted over the network to
user stations. The FdEventArchiver class aso usesthe event database to determineif aprocedure
needs initiated. If a procedure needs initiated the FdEVEventArchiver class will instantiate a
FdEvProcedure class.

The FdEVEventListener class listensfor formatted events on the network. The FOEVEventListener
filters events by using information provided in the FdEvEventConfig class, and then sends the
eventsto display.

3-74 305-CD-049-001

QL€

T00-670-AD-S0€

Planning
and
Scheduling

User

Interface —_—

Resouce
Management

Command
Management

Events

Events

Figure 3.7-1.

Event

Processing

MSS
Events

Telemetry

MSS

Events

Events

Events

DMS Event Processing Context

Analysis

Command

Command
Management

FdEvEventLogger

+

GenEvent(myEventID, mySpacecraftid, EcTBoolean
mySubsystem, myParamlList,
myLineNumber, myFile)

sends
|| =]
FoEvEvent
myEventiD 14
- mySpacecraftld: RWCString ° - *
- mySubsystem: Container* sent to +
- myNode : RWCString +

myParamList: Container*
myLineNumber: EcTInt
myFile : RWCString

9/-€

T00-670-AD-S0€

FdEVEventDB

myEventID : EcTInt

- myEventType : Container*
myBackground: RWCString
myProcedure : RWCString
- mySeverity : EcTInt

- mySubsystemFlag: EcTInt

+ ReadEvent(): EcTInt
+ Open() : EcTInt
+ Close() : EcTInt

FdEvProcedure

myProcName:String: RWCString

StartProc() : EcTInt

FdEvEventFile

myFileName : RWCString
myHandle : EcTInt

Open() : EcTInt

Read(FoEvFormattedEvent) EcTInt
Write(FoEvFormattedEvent). EcTInt

Close() : EcTInt

ReadIndex(Time, FoEvFormattedEvent) EcTiInt

Hil
= FdDbMetadata
- myFileName : RWCptring
CslfMessageHandler - myPath : RWCStrin
- myType : EcTInt
- myStoragelLoc: EcTfint
- myCreateDate : RW[Time
- myUR : EcTint
- mySize : EcTint
Sends
\IF
objects
updated reads
by
E | =
FdEvEventHandler -
1+ FdEVEventArchiver
@send: tart
SendEvent(FoEvEvent): EcTInt -
In?t?) ; éi%oﬁj vEvent): EcTin + MulticastEvent(FoEvFormattedEvent) EcTInt
ReadEvent(FoEVEvent): EcTInt + InitQ : EcTVoid *
reads
FdEVEventConfig
formats/
myIncomingTypes: Corjtainer archives/ read/write
- myOutgoingTypes: Corjtainer multicasts events
Read()
Open()
Close()
read FoEvFormattedEvent: =]
by myEventld : EcTInt .
= | myTime : ECTTime ~cont_a|ned\ n
mySpacecraft:String: RWCString n N
FoEvEventListener reads/ mySubsystem : Container*
sends myType : Container* +
N Node : RWCString
+ ReadEvent() : EcTInt my X +
+ DisplayEvent(): EcTInt "‘Vgess"“ge_ -ER¥‘1°S"'”9 +
+ DisplayConnect(): EcTInt myL_eve.nltEy T CTint *
+ DisplayDisconnect(): EcTInt myLine : ECTint +
+ Init() : EcTint myFile : RWCString

FormatMessage(Background,ParamList) EcT]|
SetTime() : EcTInt
BuildEvent() : EcTInt

2

Figure 3.7-2. DMS Event Processing Object Model

3.7.4 DMS Event Processing Dynamic Model

3.7.4.1 DMS Event Processing Scenario Abstract

The purpose of the Event Processing scenario is to describe the process by which events are gen-
erated, archived and sent to displays. The event trace for this scenario can be found in Figure-3.7-
3.

3.7.4.2 DMS Event Processing Summary Information
Interfaces:

User Interface

Analysis

Telemetry

Command

Resource Management

Real-time Contact Manager

Planning and Scheduling

Command Management
Stimulus:

FdEventL ogger genevent operation is called by application software.
Desired Response:

Formatted event is created, archived, and multicasted.
Pre-Conditions:

Event applications initialized.
Post-Conditions:

Event is stored at data server, and displayed at user station.

3.7.4.3 DMS Event Processing Scenario Description

The FdEVEventL ogger provides applications with away to send eventsto the FAEvVEvent Handler.
The FdEVEventLogger is responsible for creating a FOEVEvent and sending it to the FdE-
vEventHandler.

The FdEvEventHandler class sends the FOEVEvent class to the FAEvVEventArchiver class. The
FdEvEventArchiver class creates an FoEvFormattedEvent by using the FAEVEventDB event data-
base class, and information provided in the FOEVEvent class. The FAEVEventArchiver class will
use the event id to index into the FAEVEventDB. The FdEVEventArchiver starts the FAEvProce-
dure classif the FAEVEventDb classs defines a procedure to initiate. The FAEVEventArchiver ar-
chives FoEvFormattedEvent classes to the FdEvEventFile, and then multicasts
FoEvFormattedEvent classes over the network.

The FoEVEventListener class reads FOEvFormattedEvent classes off the network. The FoEv-
EventLister class uses the FAEVEventConfig class to filter events. The FOEVEventListener sends
FoEvFormattedEvent classes to the event displays.

3-77 305-CD-049-001

8.-€

T00-670-AD-S0€

FoEvEvent FdEVEvent FoEvEvent FoEvEvent FoEvFormatted FdEVEvent FUI Event FdEv
- Logger Handler Listener Config Event Archiver FdEvEventDb FdEVEventFile Display Procedure
Applications
reagls >
——reads—=>>
| _generates
event > J
| _sends .
FoEvEvent
sends FOEVEvent >>
reads ——>>
invokes| >>
<&—creates—
stores fofmatted >
event
< mutlicasts formatted
event
sends formatted event >>

Figure 3.7-3. DMS Event Procesing Event Trace

3.7.3.5 DMS Event Processing Data Dictionary
ClassName: FdEvEventConfig
Description: Configuration file used by the Event Handler and the Event Listener
to filter events.
Features:
Attributes:
mylncomingTypes
Description:The types of events the Event Listeners listens for
myOutgoingTypes

Description:The types of events the Event Handler sends to the Event
Archiver myTriggerFlag

Description: Turns triggers on/off.
myNodeType
Description: Type of machine (EOC workstation, IST, Data
Server, RT Server)
Operations:
FdEventConfig:ReadConfig
Description:Reads in all configuation information
ClassName: FdEvEventDb
Description: Event Database is used to format events, and give information
about what to do with events
Features:
Attributes:
myEventID: EcTInt
Description:event number used to index into the event database
myEventType:Container*
Description:type of event
(TLM, CMD, CMS, DMS, FUI, CSMS, RMS)
myBackground: String
Description:background text that is combined with myParamList
of FOEVEvent to create aformatted event.
(Printer %s Failed) Printer Failed is background
myProcedure: String
Description: Procedure name that needs to be triggered.
myTriggerLoc:EcTInt

3-79 305-CD-049-001

Description:Where atrigger can beinitiated
(Workstation, IST, DataServer, RTServer)
mySeverity:ECTInt
Description:Events are warnings or alarms.
mySubsystemFl ag:EcTInt
Description:Flag indicating if event should goto subsystem.
Operations:
FdEVEventDb::Open
Description:opens event database
FdEvEventDb::Close
Description:closes event database
FdEvEventDb::ReadEvent
Description:reads record from event database
ClassName: FdEvEventFile
Description: Archived event file.
Features:
Attributes:
myFileName::String
Description:Hourly event filename. Naming convention is
YYYYDDDHH.evt
myHandle::EcTInt
Description:handle of open event file
Operations:
FdEvEventFile:Open
Description:opens event file
FdEvEventFile:Close
Description:closes event file
FdEvEventFile::Read
Description:reads formatted event record from event file
FdEVEventFile::Write
Description:writes formatted event record from event file

ClassName: FdEvLogger

Description: Generated anytime an event needs to be displayed and archived.
Reference FOEVEvent for description of attributes.

3-80 305-CD-049-001

Features:
Attributes:
Operations:
FdEVEventL ogger:GenEvent(myEventI D, mySpacecraftl D, mySubsystem,
myParamList, myLine, myFile)
Class Name:FdEvProcedure
Description: This class starts up procedures
Features:
Attributes:
myProcName
Description:Name of Procedure to initiate.
Operations:
FdEvProcedure:: StartProc
Description: Starts Procedure name myProcName.

Class Name:FoEvEvent
Description:Generated anytime an event needs to be displayed and archived.
Features:
Attributes:
myEventID: EcTInt
Description:event number used to index into the event database
my Spacecraftl D:String
Descripton:identifies spacecraft
(AM1)
mySubsystem:Container*
Description:identifies subsystems
(CERES, MOPITT, MISR, ASTER, MODIS)
myNode: String
Description:identifies node name
(EOC Workstation, IST, Data Server, RT Server)
myParamList:Container*
Description:Parameters that fill in the event message.
(Ex. Printer %s Failed) %s is the Param List
myLineNumber:EcTInt
Description:Line number of event

3-81 305-CD-049-001

UseMacro __ LINE__ for thisargument
myFile:String

Description:File name of event
UseMacro __ FILE _ for thisargument
Operations:

ClassName: FoEvEventArchiver
Description: Event Archiver archives and multicastes formatted events.
Features:
Attributes:
Operations:
FdEVEventArchiver::Init
Description:initiliazes Event Archiver attributes
FdEVEventArchiver::Run
Description:main loop of Event Archiver
FdEvEventArchiver::MulticastEvent
Description:multicasts formatted event
ClassName: FoEvEventHandler

Description: Event Handler receives all events generated on the local workstation or Serv-
er. The Event Handler uses a configuration file to determine if anevent is sent to the Event Ar-
chiver.

Features:
Attributes:
Operations.
FdEvEventHandler::Init
Description:initiliazes Event Handler attributes.
FdEvEventHandler::Run
Description:main loop of Event Handler
FdEvEventHandler::SendEvent
Description:sends unformatted event to the Event Archiver

Class Name: FoEvEventListener

Description: Listens for events on the network, the sends eventsto FUI Event
Analyzer.

3-82 305-CD-049-001

Features:
Attributes:
Operations:
FoEvEventListener::ReadEvent
Description:Reads events off the network.
FoEvEventListener::DisplayEvent
Description:Sends event to Event Analyzer.
FoEvEventListener::DisplayConnect
Description:Request from FUI Event Analyzer to send events
FoEvEventListener::DisplayDisconnect
Description:Request from FUI Event Analyzer to quit sending
events
FoEVEventListener::Init
Description:Initializes Event Listener attributes
FoEvEventListener::Run
Description:Main loop of Event Listener

ClassName: FoEvFormattedEvent
Description: Event generated by Event Archiver. Event Archiver uses FOEvEvent and

the event database to generate the FoEvFormattedEvent. FoEvFormattedE-
vent gets archived, mutlicasted, and displayed by FUI Event Analyzer.

Features:
Attributes:
myEventID: EcTInt
Description:event number used to index into the event database
myTime.ECTTime
Description:Hourly event filename. Naming convention is
YYYYDDDHH.evt
myEventID: EcTInt
Description:event number used to index into the event database
my Spacecraftl D:String
Descripton:identifies spacecraft.
my Subsystem: Container*
Description:identifies subsystems
(CERES, MOPPITT, MISR, ASTER, MODIYS)

3-83 305-CD-049-001

myType:Container*
Description:type of event
(TLM, CMD, CMS, DMS, FUI, CSMS, RMYS)
myNode: String
Description:identifies node name.
(EOC Workstation, IST, Data Server, RT Server)
myMessage: String
Description: The actual event text. Background text from
database combined with ParamList from FOEVEvent.
mySeverity:ECTInt
Description:Events are warnings or alarms.
myLineNumber:ECTInt
Description:Line number of event
UseMacro __ LINE__ for thisargument
myFile:String
Description:File name of event
UseMacro __ FILE _ for thisargument
Operations:
FoEvFormattedEvent::FormatM essage
Description: Combines background text with ParamList from
FoEvEvent
FoEvFormattedEvent::SetTime
Description:Gets system time and sets time attributeof
FoEvFormattedEvent.
FoEvFormattedEvent::BuildEvent
Description: Sets attributes within the FOEvFormattedEvent.

3.8 DMS Event Retrieval

A user can build an event request when there is a need to analyze historical events. The event re-
guest will consist of start time, stop time, event identifier, event type, subsystem/instrument iden-
tifier and spacecraft identifier. The event request is sent to the data server where the requested
events are retrieved and sent back to the requesting workstation. The requested events are stored
inan event history file. Theuser interface can display the events contained in the event history file.

3.8.1 DMS Event Retrieval Context

The DM S event retrieval interfaces with the user interface subsystem, as shown in the Context Di-
agram and summarized below.

3-84 305-CD-049-001

FOS User Interface:

Sends unformatted events to the DMS. The events are formatted and archived by the DMS at
the data server.

3.8.2 DMS Event Retrieval Interfaces

Table 3.8-1. DMS Event Retrieval Interfaces

Interface Interface Class Interface Class Service Service | Frequency
Service Description Provider User
Event history | FoRgEventReque | Used by FUI when DMS FUI Frequest
request st requesting event history

3.8.3 DMS Event Retrieval Object Model

The FoRgEventRequest class provides the user away to retrieve events from the events archive.
The FoRgEventRequest class sends event requests to the FAEVEventRetriever class.

The FdEvEventRetriever class is responsible for reading formatted events from the event archive
and creating an event history file from the formatted events.

The FdDsFileManager retrieves event files from long-term storage if needed.

The FdDbM etadata class provides an interface to Sybase. This class allows access to information
about all files stored by DMS.

The FdEvFormattedEvent containsinformation about any event generated by the system. Such in-
formation as time, spacecraft id, subsystem, type, node, message severity, event application line,
and event application file are contained in this class.

The FdEvEventFile classis a hourly file used to store formatted events.

The FoEvEventHistory classis created from the FdEvEventRetriever class, and isread by the FOS
User Interface. This class maintains the formatted events requested by the FOS User Interface.

The FAEVEventRetriever class determines if the event files needed to support the request are on-
line by accessing information provided by the FdDbMetadata class. The FdEventRetriever class
makes a request to the FdDsFileManager class if event files are needed from long-term storage.
The FdEVEventRetriever class usesinformation provided in the request to read FoEvFormattedE-
vent classes from the FdEvEventFile class. A FoEvEventHistory classis created from the FOEv-
FormattedEvent classes.

3-85 305-CD-049-001

98-¢

T00-670-AD-S0€

User
Interface

< History

This System

Event

File

DMS
Event
Retrieval

Event
History
Requests

Figure 3.8-1. DMS Event Retrieval Context Diagram

/8-€

T00-670-AD-S0€

FdDbMetadata

myFileName : RWCString
myPath : RWCString
myType : EcTInt
myStorageLoc : EcTInt
myCreateDate : RWTime
myUR : EcTInt

mySize :EcTint

FoRgEventRequest

myTargetDir

myFileName : String

mySpacecraft : String

myStartTime : EcTTime

myStopTime : EcTTime
mySubsystems : Container*
myEventTypes : Container*

myStatus : FOTRqEventRequestStatus
myProcessid : EcTInt

=

FdDsFileManager

+ RetrieveFile(path,type,filename) : EcTiInt

Send()

retrieves
from
accessed
by

FdEVEventRetriever FdEvEventFile
reads - myFileName :RWCString

[—Sentto— .+ RetrieveEvent() :EcTint - myHandle :EcTint

+ Init() : EcTVoid -
Write(FdEvFormattedEvent)
Read(FdEvFormattedEvent)
+ Open() :EcTint
+ Close() :EcTInt
ReadIndex(Time,FdEvFormattedEvent)
creates
contains
FoEvEventHistory FdEvFormattedEvent
- myFileName : RWCString myEventld : EcTint
myTime : EcTTime
Write(FdEvFormattedEvent) : EcTInt) mySpacecraft : RWCString
— contains —

+ o+ o+ o+

Read(FdEvFormattedEvent) : EcTInt
Open() : EcTint
Close() : EcTint

mySubsystem : Container*
myType : Container*
myNode : RWCString
myMessage : RWCString
mySeverity : EcTInt
myLine : EcTint

myFile : RWCString

FormatMessage(Background,ParamList) 1 EcTint
SetTime() : EcTInt
BuildEvent() : EcTInt

Figure 3.8-2. DMS Event Retrieval Object Model

3.8.4 DMS Event Retrieval Dynamic Model

3.8.4.1 DMS Event Retrieval Scenario Abstract

The purpose of the Event Retrieval scenario isto describe the process by which eventsareretrieved
from the data server, and how an event history fileiscreated. The event trace for this scenario can
be found in Figure 3.8-3.

3.8.4.2 DMS Event Retrieval Summary Information
Interfaces:

User Interface
Stimulus:

FoRgEventReguest is instantiated by the FOS User Interface.
Desired Response:

Event History fileis created.
Pre-Conditions:

Event applications initialized.
Post-Conditions:

Formatted events are stored in the event history file.

3.8.4.3 DMS Event Retrieval Scenario Description

The FOS User Interface will instantiate an FORgEventRequest class when an event history file
needsto be created. The event request is sent to the FAEvVEventRetriever class.

The FdEvVEventRetriever class determines if the events file needed to support the request are on-
line by accessing information provided by the FdDbMetadata class. The FdEventRetriever class
makes a request to the FdDsFileManager class if event files are needed from long-term storage.
The FdEVEventRetriever class usesinformation provided in the request to read FOEvFormattedE-
vent classes from the FdEvEventFile class. A FOEvEventHistory classis created from the FOEv-
FormattedEvent classes.

3-88 305-CD-049-001

68-€

T00-670-AD-S0€

FUI Event FoRgEvent
Request Request
generates —>>

< sends d
notif]

cation

sends event

request

ompletion

FdEVEvent FdDsFile FdEvent FoEvEvent
Retriever FdDbMetadata Manager File History
»
< reads
metadata
sends request ——— >
Sends event files ———=>
<< statup
reads >>
creates >

Figure 3.8-3. DMS Event Retrieval Event Trace

3.8.3.5 DMS Event Retrieval Data Dictionary
ClassName: FdEvEventFile
Description: Archived event file.
Features:
Attributes:
myFileName::String
Description:Hourly event filename. Naming convention is
YYYYDDDHH.evt
myHandle::EcTInt
Description:handle of open event file
Operations:
FdEvEventFile:Open
Description:opens event file
FdEvEventFile:Close
Description:closes event file
FdEvEventFile::Read
Description:reads formatted event record from event file
FdEVEventFile::Write
Description:writes formatted event record from event file
Class Name: FdEvVEventRetriever
Description: Controller class responsible for building event history files.
Features:
Attributes:
Operations:
FdEvEventRequest:Init
Description:Initializes Event Retriever
FdEvEventRetriever:Run
Description:Main loop of the Event Retriever

3-90 305-CD-049-001

Class Name:FdEvFormattedEvent
Description:Event generated by Event Archiver. Event Archiver uses FOEvVEvent and
the event database to generate the FoEvFormattedEvent. FoEvFormattedEvent
gets archived, mutlicasted, and displayed by FUI Event Analyzer.
Features:
Attributes:
myEvent|D: EcTInt
Description:event number used to index into the event database
myTimeEcTTime
Description:Hourly event filename. Naming convention is
YYYYDDDHH.evt
my Spacecraftl D:String
Descripton:identifies spacecraft.
mySubsystem:Container*
Description:identifies subsystems
(CERES, MOPPITT, MISR, ASTER, MODIYS)
myType:Container*
Description:type of event
(TLM, CMD, CMS, DMS, FUI, CSMS, RMS)
myNode: String
Description:identifies node name.
(EOC Workstation, IST, Data Server, RT Server)
myM essage: String
Description:The actual event text. Background text from
database combined with ParamList from FOEVEvent.
mySeverity:EcTInt
Description:Events are warnings or alarms.
myLineNumber:EcTInt
Description:Line number of event
UseMacro __ LINE__ for thisargument
myFile:String
Description:File name of event
UseMacro __ FILE _ for thisargument
Operations:
FoEvFormattedEvent::FormatM essage
Description:Combines background text with ParamList from
FoEvEvent
FoEvFormattedEvent::SetTime
Description: Gets system time and sets time attributeof
FoEvFormattedEvent.
FoEvFormattedEvent::BuildEvent
Description: Sets attributes within the FOEvFormattedEvent.
Class Name:FoEvEventHistory
Description:File generated from an event history request. Contains
FdEvFormattedEvent(s).
Features:
Attributes:
Operations:

3-91 305-CD-049-001

FoEvEventHistory:Open
Description:opens event history file
FoEvEventHistory:Close
Description:closes event history file
FoEVvEventHistory::Read
Description:reads formatted event record from event history file
FoEVEventHistory::Write
Description:writes formatted event record from event history file
Class Name:FoRgEventRequest
Description:Interface class with between DM S and FUI Event Analyzer. Thisclassis
used to request event history from DMS.
Features:
Attributes:
myTargetDir:String
Description:Directory where event history fileis created.
myFileName: String
Descripton:Event History Filename.
my Spacecraft: String
Descripton:identifies spacecraft .
myStartTime:EcTTime
Description:start time of the event request
myStoptime:EcTTime
Description:stop time of the event request
my Subsystem: Container*
Description:identifies subsystems
(CERES, MOPITT, MISR, ASTER, MODIYS)
myType:Container*
Description:type of events requested
(TLM, CMD, CMS, DMS, FUI, CSMS, RMS)
myStatus:EcTInt
Description: Status of event request returned to FUI
myProcessld:EcTInt
Description:|d of the requesting FUI Event Analyzer
Operations:
FoRgEventRequest:Send
Description: Sends event request to Event Retriever

3-92 305-CD-049-001

3.9 DMS File Management, External Interfaces, Database Access

The DMS is responsible for providing file management, external interface, and database access
utilities. File management utilitiesallow the user to store, retrieve, and access DM S managed data
files. External interface utilities provide access to EDOS back orbit telemetry data, FDF products,
and SCDO long term storage data. Database utilities allow the user to update, extract, and retrieve
information from Sybase.

3.9.1 DMS File Management, External Interfaces, Database Access Context

The DMS utilities interface with several FOS subsystems and external interfaces, as shown in the
Context Diagram and summarized below.

FOS Applications:
Send unix data files and database updates to the DM S for storage.

Receives unix data files, database information, and external file arrival notifications from the
DMS.

EDOS:

Sends back orbit telemetry file, which is then merged with real-time telemetry to create a
seamless archive.

FDF:

Sends FDF data productsto the EOC. The DM S notifies subsystemsof the arrival of FDF data.
SCDO:

Receivesdatafilesfromthe EOC. Datafilesare stored at the DACC for thelife of the mission.

Sends long term archive filesto the DMS. The DMS requests data files from SCDO on an as
needed basis.

3-93 305-CD-049-001

v6-€

T00-670-AD-S0€

FOS -
Applications Data files, Database Updates
Data files, Database Extracts,
Flle Arrival Notifications
FDF Products
FDF

Back Orbit
TIm File

Data Files

EDOS

Data Files

Figure 3.9-1. DMS File Management, External Interfaces,

Database Access Context Diagram

SCDO

3.9.2 DMS File Management, External Interfaces, Database Access Interfaces

Table 3.9-1. DMS File Management, External Interfaces, Database Access Interfaces

Interface Interface Class Interface Class Service Provider Service | Frequency
Service Description User
File Access FdDsFileAccessor | Allows for storage and DMS All FOS Frequent
retrieval of data files
Database FdDbDBAccessor | Allows for extracting, DMS PAS, Frequent
Access updating, adding, and deleting FUI,
from Sybase database tables CMS,
CMND

3.9.3 DMS File Management, External Interfaces, Database Access Object Model

The FoDsFile class provides a wrapper for all subsystems to use when opening, reading, writing,
and closing data files, and the FdDsFileAccesser class provides a mechanism for storing and
retrieving FoDsFile classes. Software applications will link FoDsFile and FdDsFileAccessor into
their executable. Applications can obtain information about data files by using the GetFilelnfo
operation within the FdDsFileAccesser class. Such information as path, type, creation date, size,
and long term storage can be retrieved. FdDsFileAccessor is a DMS owned proxy that
communicates with the FdDsFileManager by sending and retrieving FADsFilel nformation.

The FdDsFileManager classis responsible for maintaining FOS datafiles. The FdDsFileManager
uses the FdDbFileMeta to add, delete, update, and get fileinformation from Sybase. Datafilesare
stored at the EOC local archive for a minimum of 7 days, and some as long as a month. When
files are created they are sent to the GSFC DACC for long term storage.

FdDsFileManager will send data files to the DACC via the FdLtlngest class. When a file is
successfully archived by the DACC a Universal Reference (UR) identification is returned. The
FdDsFileManager updates file metadatawith the UR identifier. The EOC can acquire any file that
has been stored at the DACC by using the UR identifier. The FdDsFileManager uses the
FdLtDataServer classto retrieve any datafile needed from the DACC.

The FdDsDiskCleaner class is responsible for purging data files from the EOC local disk. The
FdDsDiskCleaner class use information from the FdDsFileConfig class as to how long data files
areto remain at the EOC local archive.

The FdDsExternal I nterface classisresponsible for determining when dataiis received from EDOS,
FDF, or an IST. The DMS sends a FoNtNotification class to users of the data The
FoNtNotification class informs users of the filename and path of the data received.

The FoDbA ccessor provides application software an interface to Sybase. Application software
uses the FoDbA ccessor to connect and disconnect from Sybase, and then the software uses the
appropriate subclass to add, delete, update, and get information.

The DMS uses the FdDbFileMeta, FADbTImMeta, and FADbOdbTable to access information
about data files, telemetry archive, and operational databases. The FoDbCatalogEntry allows
CMS to store and retrieve information about loads. The FdDbAcctivityDef, FdDbActCmd, and
FADDbA ctCmdParm interfaces are used by Planning and Scheduling and CMS. These tables are
used to retrieve information about activities.

3-95 305-CD-049-001

96-€

T00-670-AD-S0€

E E FoDsFil E
oDsFile
FdDsFileAccessor FdEvEventLogger
- myFilename : RWCString
+ StoreFile(path,filename,type) EcTInt Reads/ - myPath : RWCString GenEvent()
+ RetrieveFile(path,filename,type) EcTInt Writes + Open(file,path,action): fileptr
GetFileInfo(filename,path,type,date) N Close(fileyptr) . 'Ectlnt
+ Read(fileptr,recptr,size): Ectint
+ Write(fileptr,recptr,size): Ectift
Proxy used by .
all Subsystems {shared - FDM with all S/S}
Sends/
Retrieves
= - & _
FdDsFileInformation FaDsFileManager FdDbFileMeta
" myFileName : RWEString : mg'ﬁ: A e jt”"g
o mybamh : RWCString, Sends/ ~Init() : EcTVoid . - myType : EcTint
_ myD};’:e :RWTime + StoreFile(path,type,filename) EcTInt ACC o _ myStorageLoc: EcT|int
_ myStatué - EcTInt + RetrieveFile(path,type,filename) EcTint 1+ | . myCreateDate : RWTime
) myAction . EcTiInt + UpdateMeta(path,type,filename,date,UR) EcT|nt - myUR : EcTint
Y . + ExtractMeta(filename,type,data,UR) EcTInt - mySize : EcTInt
I+
1+
Retrieves Sends to
from
B bl = =]
DsCIESDTReferenceCollector FdLtingest FdLtDataServer | DsCIESDTReference
Receives 1+. - myFilename : RWCString - myFilename : RWCStripg——Acquires————@)|
+ Insert(FileMeta): EcTInt - myPath : RWCString - myPath : EcTint 1+ | + Acquire(FileMeta): EcT]|
- myType : EcTint - myType : EcTint
SCDO IIF - myUR : EcTint - myUR : EcTInt SCDO IIF
Class - mySize : EcTInt Class
- myCreateDate : RWTime - Init() : EcTVoid
+ Acquire(UR,Path): EcT|int

Init() : EcTVoid
Ingest(Filename,Path, Type,Size,Date) EcT|Int

Figure 3.9-2. DMS File Management, External Interfaces,
Database Access Object Model

>

L6-€

T00-670-AD-S0€

==

FdDsDiskCleaner

- myTimer : RWTimer

+ Init() : EcTVoid
CleanDisk() : EcTInt

+

+ DeleteFile(filename) : EcT|nt

==

Reads

E 1+

FdDsFileConfig

- myType:EcTInt : EcT]|
- myDuration : EcTInt
- myDirectory : RWCS

+ GetFilelnfo() : EcTIng

FoNtNotification

myFileName : RWCString
myPath : RWCString

Int

ring

=

FdDbFileMeta

FdDsFileManager - myFilename :RWCString
- myPath : RWCString
- - myType :EcTInt
Initialized - - I, — @
by - Init() : EcTVoid Accesses - myStorageLoc : EcTint
+ StoreFile(path,type,filename) : EcTint 1+ - myCreateDate : RWTime
+ RetrieveFile(path,type filename) : EcTint - myUR :EcTint
+ UpdateMeta(path,type,filename,date,UR) : EcTInt - mySize :EcTint
ExtractMeta(filename,type,date,UR)
Accesses
Sends
FdDsExternalinterface
- myinterface : EcTInt
- myDirectory : RWCString 1+ FdEVEventLogger
+ Init() : EcTVoid
+ SendNotification(process) : EcTInt GenEvent()
Send(path,file)
Retrieve(path,file)
+ PollDirectory(fileexists) : EcTInt
Sent
by
FdDsEdosiInterface FdDsFdfinterface
+ PopulateDB() : EcTInt
+ FormatData() : EcTInt
+ ValidateData() : EcTInt

Figure 3.9-3.DMS File Management, External Interfaces,
Database Access Object Model

86-€

T00-670-AD-S0€

FdDbAccessor DBTools
Accesses

- myConnection : RWDBConnect[o
- myDatabase : RWDBDatabae
- myTable : RWDBTable

3

+ Connect(Userld,PassWd) : RWPBConnection CoTS
+ DisConnect(Connection) : EcTInt
+ Add(TablePtr,Data) : EcTInt
+ Update(TablePtr,Data) : EcTInt
+ Delete(TablePtr,Data) : EcTInt
+ Extract(TablePtr,Data) : EcTInt
& [= [= [B
FoDbCatalogEntry FdDbFileMeta FdDbTImMeta FdDbOdbTable
- myDASId : EcTInt - myFilename : RWCString - myStartTime : RWTime - myOdbName : RW[String
- myLoadName : RWCString - myPath : RWCString| - myStopTime : RWTirhe - myOdbTime : RWTjime
- mylLoadSize : EcTInt - myType : EcTint - myDataSource : EcT|nt
- myLoadType : RWCString - myStorageLoc : EcT|nt
- myOwner : RWCString - myCreateDate : RW[ime
- mySpacecraftLocation : RWC$tring - myUR : EcTint
- myStorageLocation : RWCStrihg - mySize : EcTint
- myUplinkTime : RWTime
- myValidUplinkPeriod : FOSTimelnterval
- myUplinkLoads : RWSlistCollectables
- myNumTimesSchd : EcTInt
- myNumberUplinkLoads : EcTIpt
B B = =
FdDbActivityDef FdDbActCmd FdDbActCmdParm FdDbOrbitEvents
- myActName : RWCStfing - myActName : RWCBtring - myActName : RWC$tring - myOrbitName : RWC$tring
- myOwner : EcTint - myCmdMnem : RW[String - myCmdMnem : RWEString - myOrbitNumber : EcTjnt
- myResID : EcTint - mySSind : RWCStripg - myParmName : RW[String - mySequence : EcTInt
1+ - myStrtTrig : RWCStriig - myDeltaTime : RWTime - myLowLimit : EcTIn - myTime : RWTime
- myOvrdFlag : RWCStfing - myCmdType : RWGString - myHighLimit : EcTIn|
- myStrtTrigDelta : EcT|nt - myValidvals : RWC$tring
FoLdUlinkinfo - myMinDur : EcTInt - myDefaultval : EcTIpt
- myDuration : EcTInt - myModFlag : RWCSting
- myLoadName : RWC§tring - myDurOvrdFlag : RWString
- myTimeofUplink : RWfime - myEntryModes : RW(QString
- myMode : RWCString
- myExitMode : RWCStfing

Figure 3.9-4.DMS File Management, External Interfaces,
Database Access Object Model

3.9.4 DMS File Management, External Interfaces, Database Access Dynamic Model

3.9.4.1.1 DMS File Storage Scenario Abstract

The purpose of the File Storage scenario is to describe the process by which unix data files are
stored at the EOC and sent to long term storage. The event trace for this scenario can be found in
Figure 3.9-5.

3.9.4.1. 2 DMS File Storage Summary Information
Interfaces:

User Interface

Analysis

Telemetry

Command

Resource Management

Real-time Contact Manager

Planning and Scheduling

Command Management
Stimulus:

FdDsFileAccessor receives arequest to store a datafile.
Desired Response:

Successful status returned to FOS application.
Participating Classes:

FoDsFile

FdDsFileAccessor

FdDsFileManager

FdDbFileMeta

FdLtIngest

DsCIESDTReferenceCollector

Pre-Conditions
SCDO interface established.
Post-Conditions
Datafileis stored at EOC local archive, and at the SCDO long term archive.

3-99 305-CD-049-001

00T-€

T00-670-AD-S0€

FdLtScdo
Ingest

FOS FdDsFile FdDsFile FdDsFile

Application Accessor Manager Meta

Store
Request >
Store
Request >
<<—Status—
<<—Status
Store

Reqgyest

<< Status
Metadata
Update >

Figure 3.9-5. DMS File Storage Event Trace

3.9.4.3 DMS File Storage Scenario Description

FOS applicationswill store datafiles by using the FdDsFileAccessor class. The FADsFileA ccessor
will send FdDsFilelnformation to the FdDsFileManager concerning the datafile that needs stored.
The FdDsFileManager will copy the data file to the appropriate directory by using information
from the FdDsFilelnformation class. File metadata within Sybase is updated using the FdDs-
FileMeta class. FdDsFileMetais a subclass of the FADbAccessor class. The FdDsFileManager
class will send the data file to long term storage by calling the FdLtlngest Ingest operation.
FdLtIngest class uses SCDO provided interface classes to store data filesin long term storage.
3.9.4.2.1 DMS File Retrieval Scenario Abstract

The purpose of the File Retrieval scenario is to describe the process by which unix data files are
retrieved from the EOC local archive, or SCDO long term archive. The event trace for this sce-
nario can be found in Figure 3.9-6.
3.9.4.2.2 DMS File Retrieval Summary Information
Interfaces:

User Interface

Analysis

Telemetry

Command

Resource Management

Planning and Scheduling

Command Management

Stimulus:
FdDsFileAccessor receives arequest to retrieve adatafile.
Desired Response:

FOS application receives successful status and pointer to unix datafile.
Participating Classes:

FoDsFile

FdDsFileA ccessor

FdDsFileManager

FdDbFileMeta

FdLtDataServer

DsCIESDTReference
Pre-Conditions

SCDO interface established.
Post-Conditions

Datafileisretrieved from either EOC local archive, or SCDO long term archive.

3-101 305-CD-049-001

c0T-€

T00-670-AD-S0€

FOS FdDsFile FdDsFile FdDsFile FdLtScdo DsCIESDT

Application FoDsFile Accessor Manager Meta DataServer Reference
Retrigve
Request >
Retrieve
I Request >
Metadata
Request >
<<—— Status, UR—
I<<— Status —
<<—Status

Retrieve Request — >

e
< Ar(I::t?II(\BIEd o
<< Status
<<— Status
<<——Status
Read —>>1

Figure 3.9-6. DMS File Retrieval Event Trace

3.9.4.2.3 DMS File Retrieval Scenario Description

FOS applications will retrieve data files by using the FdDsFileAccessor class. The FdDsFileAc-
cessor will send FdDsFilelnformation to the FdDsFileManager concerning the data file that needs
retrieved. The FdDsFileManager will accessfile metadataviathe FdDsFileMetaclass. The FdDs-
FileManager will used the file metadata to determineif the data file needs retrieved from long term
storage. If so, arequest is sent to the FdLtDataServer class for the datafile. The FdLtDataServer
will request filesfrom SCDO provided classes. Oncethe datafileisretrieved from long term stor-
age, the FdDsFileManager will copy the datafile to the requested path. The FOS application will
then use the FoDsFile class to open, close, read, and write to afile.

3.9.4.3.1 DMS Sybase Table Access Scenario Abstract

The purpose of the Sybase Table Access scenario is to describe the process by which a FOS appli-
cation can update or extract table information from Sybase. The event trace for this scenario can
be found in Figure 3.9-7.

3.9.4.3.2 DMS Sybase Table Access Summary Information
Interfaces:
User Interface
Planning and Scheduling
Command Management
Command
Stimulus:
FoDbA ccessor receives an update or extract request from a FOS application.
Desired Response:
The requesting FOS application updates or extracts information from
within Sybase.
Participating Classes:
FoDbA ccessor
Subclass of FODbA ccessor
FOS application Sybase user
DBTools classes (COTS)
Pre-Conditions
Sybase must be initialized.

Post-Conditions
FOS application receives status from DM S DBA ccessor

3-103 305-CD-049-001

YOT-€

T00-670-AD-S0€

FoDbCatalogEntry

CMS FoDbAccessor DBTools
——Connect—————=>>
Connect >>
<< Connect Htatus
<<——Connect Status——
Update, Extract >
Update,
Extract 2]
< Status,
Data
<< Statuss, Data
Disconnect————=>
Disconngct >>1

Figure 3.9-7. DMS Sybase Table Access Event Trace

3.9.4.3.3 DMS Sybase Table Access Scenario Description

When FOS application software needs to make updates to or extract information from a Sybase
table, the application will do so by using the FoDbA ccessor class. The FoDbA ccessor is a super-
class which contains connect, disconnect, update, and extract operations. FOS application soft-
ware will link in the FoDbA ccessor and the subclass which corresponds to the needed database
table when they create their executable. The DBAccessor uses DBTools, which is a RoqueWave
COTS product, to access Sybase. To update a table, the application software will instantiate a
FoDDbA ccessor subclass, and then call the FoDbA ccessor update operation passing needed infor-
mation. To extract from a Sybase table, the application software will instantiate a FODbA ccessor
subclasss, and then call the FoDbAccessor extract operation passing needed information. The
FoDbA ccessor subclass will contain the retrieved information when the operation compl etes.

3.9.4.4.1 DMS FDF Interface Scenario Abstract

The purpose of the FDF Interface scenario is to describe the process by which the DMS receives
FDF data, and notifies FOS applications that data has arrived. The event trace for this scenario
can be found in Figure 3.9-8.

3.9.4.4.2 DMS FDF Interface Summary Information
Interfaces:
Planning and Scheduling
Analysis
Command Management
Stimulus:
FdDsFdfInterface receives FDF products.
Desired Response:
Notification is sent to FOS processes which desire FDF products.
Participating Classes:
FdDsFdfInterface
FdDsExternallnterface
FoNtNotification
FdDsFileManager
Pre-Conditions
FdDsFdfInterface must be polling directory in which FDF products arrives.
Post-Conditions
FdDsFdfInterface polls FDF products directory.

3-105 305-CD-049-001

90T-€

T00-670-AD-S0€

FdDsFdf
Interface

Notify >

FdDsExternal FoNt FdDsFile
Interface Notification Manager
Poll
Directory >
Stofe
File >
<< Status
Notify >
Process
Process
Send Event

FOS
Application

FdEvEvent
Logger

Figure 3.9-8. DMS FDF Interface Event Trace

3.9.4.4.3 DMS FDF Interface Scenario Description

The FdDsFdfInterface classis always polling a dedicated FDF product directory. Once FDF sends
data to the dedicated directory, the FdDsFdfInterface class will validate and format the new FDF
data. Once validated, the FdDsFdInterface class will store the FDF data using the FdDsFileMan-
ager class. Oncethe dataisstored the FdDsFdfInterface classwill send FONtNotificationsto Plan-
ning and Scheduling, Command Management, and Analysis Subsystems.

3.9.6 DMS File Management, External Interfaces, Database Access Data Dictionary

FdDbA ccessor
class FdDbA ccessor
This classis used to interface with Sybase. The user connect to Sybase, disconnect from Sy-
base, update table information, and extract table information. Extract and update calls might
need to be moved to the subclass level.
Public Functions
RWDBConnection Connect(Userld, Passwd)
This function allows a user to connect to a Sybase Database.
EcTInt DisConnect(Connection)
Disconnect
This function allows a user to disconnect from Sybase
EcTInt Extract(TablePtr, Data)

This member function extracts datafrom a Sybasetable. THisisageneric extract, and this
function may evolve to multiple types of extracts.

EcTInt Update(TablePtr, Data)
This member function updates a Sybase table. Thisis ageneric update, and this function

may evolve to multiple types of updates
Private Data
RWDBConnection myConnection
This member variable is the connection to Sybase.
RWDBDatabae myDatabase
This member variable is the database the myConnection points to.

RWDBTable myTable
This member variable is the table the myConnection points to.

3-107 305-CD-049-001

FdDbActCmd
class FdADbActCmd
The Activity Command Tabl e provides the defintions of commands that make up a specific ac-
tivity
Base Classes
public FADbA ccessor

Private Data
RWCString myActName
activity name specifies aunique identifier for a given activity.
RWCString myCmdM nem

command mnemonic represents the mnemonic of an ATC stored command, or avalid EOS
Command Language (ECL) directive

RWCString myCmdType
command type represents the type of command used in the activity.

EcTInt myDeltaTime
deltatime is the time offset from the start time or the stop time of the activity.
RWCString mySSind

start/stop timeindicator isused to specify whether the deltatime specified for the command
is associated with the start time or the stop time of the activity.

FdDbActCmdParm
class FdDbActCmdParm

Base Classes
public FADbA ccessor

Private Data
RWCString myActName
activity name specifies aunique identifier for a given activity.
RWCString myCmdMnem
parameter name identifies the parameter associated with a command.

EcTint myDefaultVal

default value indicates the value to be used if the no value is specified when the activity is
scheduled.

3-108 305-CD-049-001

EcTInt myHighLimit

high limit indicates the highest value in the range of values for the parameter.
EcTInt myL owL imit

low limit indicates the lowest value in the range of values for the parameter.
RWCString myM odeFlag

modifiable flag indicates whether a different parameter value can be specified when sched-
uling an activity.

RWCString myValidVals
valid values indicate the discrete values in which the parameter must occur.

FdDbActivityDef
class FdDbActivityDef
stp/omt class definition 1457203

Base Classes
public FADbA ccessor

Private Data
RWCString myActName
activity name specifies aunique identifier for a given activity.
RWCString myDur OvrdFlag

duration override flag is used to indicate if the duration specified for activity may be over-
ridden when scheduling an activity

EcTInt myDuration

duration specifies the default duration for the activity.
RWCString myEntryM odes

entry modes specifies all valid modes of the resource at the time the activity is scheduled.
RWCString myExitM ode

string mode specifies the mode of the resource at the end of the activity.
ECTInt myMinDur

minimum duration specifies the minimum duration for the activity.
RWCString myM ode

mode specifes the mode of the resource during the activity period.
RWCString myOvrdFlag

start trigger override flag is used to indicate if the start trigger event may be overridden
when scheduling an activity.

3-109 305-CD-049-001

Ectint myOwner

owner specifiesthe user ID of the person/group who is authorized to define, modify, and/
or schedule the give activity.

EcTInt myResID

resource ID specifies the name of the resource that the activity operates on.
RWCString myStrtTrig

start trigger specifies the name of the event that is used to schedule the give activity.

EcTIint myStrtTrigDelta
start trigger deltaindicates the time offset, in seconds, from the start trigger event used for
sheduling the activity.
FdDbFileMeta
class FdDbFileM eta
This class maintains information about data files The user can access this information through
the DBAccessor.
Base Classes
public FdDbA ccessor

Private Data
RWTime myCreateDate
file creation date
RWCString myFilename
name of file
RWCString myPath
path where fileislocated
EcTInt mySize
size of datafile
EcTInt myStoragel oc
storage location (i.e, local EOC archive, long-term, or both)
EcTInt myType
Type of file (i.e., report, archive,event,etc...)
EcTint myUR
Universal Reference - this applies when file is sent to long term storage

3-110 305-CD-049-001

FdDbOdbTable
class FADbOdbTable
THe ODB table classis used to determine when databases went on-line

Base Classes
public FADbA ccessor

Private Data

RWCString myOdbName
Operational database name

RWTime myOdbTime
Time ODB went on-line

FdDbOr bitEvents
class FADbOr bitEvents
Thisclassallowsaccessto the orbit event table. Thistableispopulated when the EOC receives
FDF data.
Base Classes
public FADbA ccessor

Private Data
RWCString myOr bitName
Orbit Event Name
EcTInt myOrbitNumber
Acuta Orbit Number
EcTInt mySequence
Sequence of event in agiven orbit
RWTimemyTime
Time of an Orbit

FdDbTImMeta
classFdDbTImM eta
Table that contains information about telemetry data that is stored at the EOC and the DACC

3-111 305-CD-049-001

Base Classes
public FADbA ccessor

Private Data
EcTInt myDataSour ce
SOurce of telemetry R/T, Back Orbit, NCC, EDOS
RWTimemyStartTime
Start time that corresponds to a stop time of tim data
RWTime myStopTime
Stop time that corresponds to a start time of tim data

FdDsDiskCleaner
class FdDsDiskCleaner
Thisclass cleansthe EOC local archive by removing old filesfrom the disk. Theold files can
be retrieved from long term archive if needed.
Public Functions

EcTint CleanDisk(void)
This member function wakes up daily and cleans old data from the EOC local archive.

EcTInt DeleteFile(filename)
THis function removes file from the EOC local archive.

EcTVoid Init(void)
This member function initializes variables and connnections.

Private Data

RWTimer myTimer
This member variableisadaily timer.

FdDsEdosl nterface
class FdDsEdosl nterface

Thisclassisderived from FdDsExternalInterface. Thisclassisresponsiblefor polling adirec-
tory waiting for back orbit telemetry.

3-112 305-CD-049-001

Base Classes
public FdDsExter nall nter face

FdDsExter nall nterface
class FdDsExter nall nterface
THis classis abase class that allows for sending, receiving external data, polls directorys for
data, and sends notifications when data arrives.
Public Functions
EcTVoid I nit(void)
Initializes variables and connections
EcTInt PolIDirectory(fileexists)

Pollsadirectory waiting for datato arrive from external interace. Notifies subsystems data
when data arives.

EcTint Retrieve(file)
Retrieves afile from an external interface

EcTInt Send(file)
Sends afile to an external interface

EcTInt SendNotification(process)
Notifies subsystems when external data arrives.

Private Data
RWCString myDirectory
Directory datafiles are stored in
EcTInt mylnterface
Externa interface connection - may not be one when using polling directory interface

FdDsFdfl nterface
class FdDsFdfl nterface

This class is derived from FdDsExternalInterface. This class provides utilities for formating,
validating, and populating Sybase with FDF data.

3-113 305-CD-049-001

Base Classes
public FdDsExter nall nter face

Public Functions
EcTInt FormatData()
Formats FDF in aformat usable by FOS appliations
EcTInt PopulateDB()
Popul ates Sybase with FDF data

EcTInt ValidateData()
Validates FDF data

FdDsFileAccessor
class FdDsFileA ccessor

Public Functions
EcTint GetFilel nfo(filename, path)
THis member function get information about a DMS managed datafile
Ectint RetrieveFile(path, filename, type)
This member function retrieves a DM S managed file

EcTInt StoreFile(path, filename, type)
This member function stores adatafile with DMS

FdDsFileConfig
class FdDsFileConfig
This class contains information about the data filesin the EOC local archive.

Public Functions

EcTint GetFilel nfo()
This member function reads data file information from a config file.

Private Data
RWCSTring myDirectory
This member variable is the directory where datafile types reside.
EcTInt myDuration

This member variable holds the length of time a given data file type remains at the local
EOC archive.

3-114 305-CD-049-001

EcTInt myType
This member variableis the type of datafile.

FdDsFilel nformation
class FdDsFilel nformation
This class gets passed between the FdDsFileManager and the FdDsFileAccessor classes. It
containsinformation for storing and retrieving files, and updating and extracting file metadata.
Private Data

EcTInt myAction

Thismember variable contains action to be taken. Store, Retrieve, UpdateM eta, or Extract-
Meta.

RWTime myDate

This member variable contains creation data of file.
RWCString myFileName

This member variable contains the actual filename.
RWCString myPath

This member variable contains the path of thefile.
EcTInt myStatus

This member variable contains status of the request.
EcTInt myType

This member varialbe containsfile type.

FdDsFileM anager
class FdDsFileM anager
This class stores and retrieves files, updates file metadata, and extracts file metadata.

Public Functions
EcTInt ExtractM eta(filename, type, date, UR)
Extracts data file information from Sybase.
EcTInt RetrieveFile(path, type, filename)
THis member function retrieves afile from the DM S managed area.
EcTInt Stor eFile(path, type, filename)
This member function takes a file from path and storesit in DM S managed directory.
EcTInt UpdateM eta(path, type, fileanme, date, UR)
Updates information about datafilesin Sybase

3-115 305-CD-049-001

FdLtDataServer
class FdLtDataSer ver

Thisclassprovidesainterface withthe SCDO DataServer. Thisclassretrievesdatafilesneed-
ed from long term storage.

Public Functions

EcTInt Acquire(UR, Path)
This member function acquire data from long term storage by passing the Universal
Refernece.
Private Functions

EcTVoid I nit(void)
This member functions initializes variables and connections

Private Data

RWCString myFilename
This member variable contains name of fileto retrieve.

EcTint myPath

This member variable contains path to put long term filein.
EcTint myType

This member variable contains type of file to retrieve.

EcTInt myUR
This member variable contains the Universal Reference of fileto retrieve.

FdLtlngest
class FdLtIngest
This classisthe interface class used to send data files to long term storage

Public Functions
EcTInt I ngest(Filename, Path, Type, Size, Date)
This member function sends alocal archive file to long term storage

Private Functions

EcTVoid I nit(void)
This member function initializes variables and connections.

3-116 305-CD-049-001

Private Data

RWTime myCreateDate

This member variable isthe file creation date. .
RWCString myFilename

This member variable contains name of file sent to long term storage.
RWCString myPath

This member variable contains path where SCDO Ingest pullsfile from.
EcTInt mySize

This member variable contains size of file
EcTint myType

This member variable contains type of file to send to long term storage.
EcTint myUR

This member variable is the Universal Reference of thefile - returned from SCDO Ingest

FoDbCatalogEntry
class FoDbCatalogEntry
This class provide CM S with interface with Catalog Entry table within Sybase. Information
about loads is accessed using this class.
Base Classes
public FADbA ccessor

Private Data

EcTInt myDASId

EcTInt myNumTimesSchd

EcTInt myNumber UplinkL oads
RWSlistCollectables myUplinkL oads

THe id of the DAS in which the load was requested to be uplinked.
RWCString myL oadName

The unique name identifying the load.
EcTInt myL oadSize

The size of the load in words.
RWCString myL oadType

Thetype of load - table, RTS, ATC, flight software, or microprocessor

RWCString myOwner
The user or group that owns the load.

3-117 305-CD-049-001

RWCString mySpacecr aftL ocation
The location of the load in the spacecrafts memory.

RWCString myStor agel ocation

The location of theload in DMS.
RWTime myUplinkTime

The time at which the load was uplinked to the spacecraft.
FOSTimelnterval myValidUplinkPeriod

The period of time for which the load isvalid.

FoDsFile
class FoDsFile
Class used by FOS to access datafiles. This class gives FOS a generic interface to data files.
This class will evolve to have many reads and writes of files.
Public Functions

Ectint Close(fileptr)

This classes closes a previously opened file.
fileptr Open(file, path, action)

This member functions opens the specified datafile.
Ectint Read(fileptr, recptr, size)

This member function reads the file pointed to by fileptr.
Ectint Write(fileptr, recptr, size)

This member funciton writes to file pointed to by fileptr.

Private Data

RWCString myFilename
Name of file to open, close, read, or write to.

RWCString myPath
Path of filename being accessed.

FoLdUlinkInfo
class FoLdUlinklInfo

Private Data

RWCString myL cadName
Name of Load

3-118 305-CD-049-001

RWTime myTimeofUplink
Time load was uplinked to spacecraft

FoNtNotification
class FoNtNotification
This classis used to notify processes that a datafile is available for processing.

Private Data
RWCString myFileName

This member variable contains name of file available for processing.

RWCString myPath
This member varaible contains path of availablefile.

3.10 DMS Telemetry Archiver

3.10.1 DMS Telemetry Archiver Context
The DM S Telemetry Archiver interfaces are described bel ow and displayed in the context diagram.

RMS:

Initializes this instance of the archiver and provides the data required for this archiver to
configure itself properly.

Telemetry:

Sends atelemetry or dump EDU to be archived.
File Archival:
Receives the hourly telemetry file or the dump file.

3.10.2 DMS Telemetry Archiver Interfaces

Table 3.10.2 DMS Telemetry Archiver Interface

Interface Interface Class Interface Class Service Provider Service | Frequency

Service Description User
Provide data | FdArTImArchProx | Pass telemetry data unitsto | DMS TLM Frequently
units from y DMS.
TLM to DMS
archiver.

FAArEDU Data unit container

Get FACfRMSConfigP | Pass information to DMS. | RMS DMS Upon
configuration | roxy startup
information
from RMS.

Note: Above tableis subject to change.

3-119

305-CD-049-001

3.10.3 DMS Telemetry Archiver Object Model

The FdArTImArchiver object is configured according to information received from RMS via the
FACfRM SConfigProxy class. Once initialized, FdArTImArchiver receives EDUs via FAArTI-
mArchProxy and manages their storage. FAArTImArchiver receivesthe EDU by invoking the re-
trieveData function of the FdArUserData object. FdArUserData encompasses the interface
between the archiver and TLM. FdArTImArchiver then builds and stores the SAU by using the
build and store methods contained in the FAArSAU object. FdArTImArchiver continuesreceiving
EDUs until a data dropout is detected. During this process, FdArTImArchiver invokes methods
contained in FAArSAU to check for valid sequence counts in the data (except for dumps). If se-
guence gaps are detected, FAArTImArchiver uses FAMtRTUpdateNotification to update the meta-
data table for available telemetry.

A singleinstance of FAArSAU remains persistent throughout the contact. This object is responsi-
ble for building and storing the SAU. It also maintains the current telemetry sequence count and
verifiesthat the EDU sequence count isin order. Inaddition, FdAArSAU updates and maintainsthe
start and stop time of the current, contiguous, telemetry stream (thisis not done for dumps).

The FAArSAU object stores the SAU. The SAU consists of FdArHeader and FdArUserData.
FdArHeader contains the information pertinent to the particular EDU. FdArUserData containsthe
actual EDU and the operation required to retrieve the EDU from TLM.

The FdArHourlyTImFile object is responsible for operations on the local archive file. The FAM-
tUpdateNotification object provides the interface between the archiver and the archive metadata
table. This notification is sent whenever a new file is opened. The FAMtRTUpdateNotification
object provides the interface to the 'available telemetry' metadata table. This table contains start
and stop times of all contiguous telemetry datain the archive.

3.10.4 DMS Telemetry Archival Dynamic Model
3.10.4.1 DMS Telemetry Archival Scenario Abstract

3.10.4.2 DMS Telemetry Archival Summary Information
Interfaces:

RMS

TLM

File Archival
Stimulus:

Receipt of telemetry packets from telemetry.
Desired Response:

Storage of Standard Archive Units (SAUSs) to afile.
Pre-Conditions:

Archiver software has been initiated.

Post-Conditions:

3-120 305-CD-049-001

T¢T-€

T00-670-AD-S0€

TLM

EDOS

Tlm EDus
Dump EDUs

Ground
Telemetry

Configuration Data

RMS

Telemetry
Archiver

- Hourly TIm Files ————

File
Archival

Figure 3.10-1. DMS Telemetry Archiver Context Diagram

acl-€

T00-670-AD-S0€

FdMtUpdateNotification

E : - myFilename : char[36]
il FdArTImArchiver - MyAction :int
FICTRMSConfioP, Gets - myTime :time
onfighroxy - myListenAddr :int - -
- myDataTypeid :int * recelve(‘)v:mt
+ send(ListenAddr,DataTypeid) :int - myDumpStart :int + send() :int
+ receive() :int - myDumpStop :int : zz:ﬁ%‘z;ﬁ:g} :~V\Z;?d
- myDumpSource :int sends N
+ setFilename(char[36]) : void
+ init() :int i
+ run() :int builds
FAArSAU E
- mySeqCount :int
- myPrevSeqCount :int | FdArHourlyTImFile
- myRTStartTime :time StoresTo ~ myFilename : char[36]
- MyRTStopTime : time 12| - myLocation :char(36]
+ Store() :int + Close() :int
+ Build() :int + Write() :int
E + setRTStartTime(time) : void + Read() :int
FAArTImArchProxy + setRTStopTime(time) : void + Open() :int
+ getRTStartTime() :time
- + getRTStopTime() :time
+ Se"d_() sint. + checkSeqCount() :int
+ receive() :int + getPrevSeqCount() :int
+ getSeqCount() :int E
+ setPrevSeqCount(int) : void sends
+ setSeqCount(int) : void @ FdMtRTUpdateNotification
1+
- myDataForm :int
- myScid :int
- myDataType :int
- myStopTime :time
- myStartTime :time
+ setStartTime(time) : void
E + setStopTime(time) : void
FdArHeader i + setDataType(int) : void
+ setScid(int) : void
- mylLength :int FdArUserData + setDataForm(int) : void
- myScid :int getsTimeFrom + receive() :int
- myD.ataTyp.eid sint + retrieveData() : int + send() :int
- myTime :time + convertTime() :time
- myDataSource :int
- myQuality :int
FdArBlock FJArEDU FdArPacket

Figure 3.10-2. DMS Telemetry Archiver Object Model

A >

T00-670-AD-S0€

RT String

FdArTImArchProxy

FACfRMSConfigProxy FAArTImArchiver FAArSAU FdArHeader FdArUserData FdArHourly TimFile FdMtRTUpdateNotification FdMtUpdateNotification
cleates >>
read configuration —>
data
<< retripves incoming data
<&— gets time —
[— builds SAU >
I builds header >>|
send tim file my notification >
store BAU to file >
send RT metadata notification >

Figure 3.10-3. DMS Telemetry Archiver Event Trace

3.10.4.3 DMS Telemetry Archival Scenario Description

The DM S telemetry archiver isinitiated and retrievesits configuration information from RMSvia
FACfRM SConfigProxy. The archiver then waits until TLM begins sending data units to the ar-
chiver via FdArTImArchProxy. Upon receipt of data, FdArTImArchiver calls the build function
of FAArSAU to build an SAU from theincoming dataunit. A time stampis placed inthe SAU and
the SAU header information is built. Aseach SAU is built, it is archived to an hourly telemetry
fileviathe /O functionsin FdArHourlyTImFile. File metadatais updated when anew hourly file

is opened, and RT/PBK metadata is updated after each real-time contact.

3.10.5 DMS Telemetry Archiver Data Dictionary

FdArHeader
class FdArHeader
This class contains the SAU header information

Public Construction
FdArHeader ()
Thisisthe default constructor for the class

~FdArHeader ()
Thisisthe default destructor for the class

Private Data

int myDataSour ce

This member contains the data source
int myDataTyped

This member contains the datatype
int myL ength

This member contains the data length
int myQuality

This member contains the data quality
int myScid

This member contains the spacecraft 1D
timemyTime

This member contains the time stamp

FdArHourlyTImFile

classFdArHourlyTImFile
This class contains the hourly telemetry file

3-124

305-CD-049-001

Public Construction

FdArHourlyTImFile()
Thisisthe default constructor for the class

~FdArHourlyTImFile()
Thisisthe default destructor for the class

Public Functions
int Close(void)
This function closes the hourly tim file
int Open(void)
This function opens the hourly tim file
int Read(void)
This function reads the hourly tIm file
int Write(void)
This function writes to the hourly tim file

Private Data
char myFilename[36]
This member variable contains the tim file name

FdArSAU
classFdArSAU
Thisclass contains the Standard Archive Unit for thetelemetry archiver, retriever, & playback
merger
Public Construction
FdArSAU()
Thisisthe default constructor for the class

~FdArSAU()
Thisisthe default destructor for the class

Public Functions

int Build()
This function builds the SAU

int Store()
This function stores the SAU

3-125 305-CD-049-001

int check SeqCount(int)

This function validates the sequence count
int getPrevSeqCount()

This function retrieves the previous seq count
time getRT StartTime()

This function retrieves the stream start time
time getRT StopTime()

This function retrieves the stream stop time
int getSeqCount()

This function retrieves the sequence count
void setPrevSeqCount(int)

This function sets the previous sequence counter
void setRT StartTime(time)

This function sets the stream start time
void setRT StopTime(time)

This function sets the stream stop time
void setSeqCount(int)

This function sets the sequence count

Private Data

int myPrevSeqCount
This member variable contains the previous sequence count

time myRT StartTime

This member variable contains the stream start time
time myRT StopTime

This member variable contains the stream stop time

int mySeqCount
This member variable contains the current sequence count

FAArTImArchProxy
class FAAr TImArchProxy

Public Construction

FAArTImArchProxy()
Thisisthe default constructor for the class

3-126

305-CD-049-001

~FdAr TImArchProxy()
Thisisthe default destructor for the class

Public Functions
int receive()
This receives the configuration information
int send(myListenAddr, myDataTypeid)
This sends the configuration information

FAArTImATrchiver
class FAAr TImAr chiver
This class contains the telemetry archiver

Public Construction
FAArTImArchiver()
Thisisthe default constructor for the class

~FdArTImArchiver()
~FdArTImArchiver();
Thisisthe default destructor for the class

Public Functions
intinit()
This function initializes the archiver for execution

int run()
This function executes the telemetry archiver

Private Data
int myDataTypeid
This member contains the data type for this archiver

int myListenAddr
This member contains the listen address for this archiver

FdArUserData
class FdArUser Data
This class contains the EDU data

3-127

305-CD-049-001

Public Construction

FdArUser Data()
This function is the default constructor

~FdArUserData()
Thisfunction is the default destructor

Public Functions

time convertTime()
This function converts the time in the EDU to the desired format

int retrieveData()
This function retrieves the EDU

FACfRM SConfigPr oxy
class FACfRM SConfigPr oxy

Public Construction

FACfRM SConfigProxy()
Thisisthe default constructor for the class

~FdCfRM SConfigProxy()
Thisisthe default destructor for the class

Public Functions
int receive()
This receives the configuration information
int send(myListenAddr, myDataTypeid)
This sends the configuration information

FAMtRTUpdateNotification
class FAMtRTUpdateNotification

This class contains the interface between the playback merger and the RT/PBK metadata

Public Construction
FAMtRTUpdateNotification()
Thisisthe default constructor for the class

~FdMtRTUpdateNotification()
Thisisthe default destructor for the class

3-128

305-CD-049-001

Public Functions
int receive()
This function receives the notification

int send()
This function sends the notification

void setDataFor m(int)
This function sets the Data Form attribute

void setDataType(int)
This function sets the Data Type attribute

void setScid(int)
This function sets the SCID attribute

void setStartTime(time)
This function sets the Start Time attribute

void setStopTime(time)
This function sets the Stop Time attribute

Private Data

int myDataForm
This member variable contains the stream form (RT vs PBK)

int myDataType

This member variable contains the stream data type
int myScid

This member variable contains the stream SC id

time myStartTime
This member variable contains the stream start time

time myStopTime
This member variable contains the stream stop time

FdMtUpdateNotification

class FdMtUpdateNotification
This class contains the interface between the playback merger and the DM S metadata

Public Construction

FdMtUpdateNotification()
Thisisthe default constructor for the class

3-129 305-CD-049-001

~FdMtUpdateNoatification()
Thisisthe default constructor for the class

Public Functions

int receive(void)

This function receives the notification
int send(void)

This function sends the notification
void setAction(int)

This function sets the Action attribute
void setFilename(char)

This function sets the Filename attribute
void setTime(time)

This function sets the Time attribute

Private Data
int myAction
This member contains the requested action
char myFilename[36]
This member contains the filename for metadata
timemyTime
This member contains the Time

3.11 DMS Telemetry Playback Merger

The DMS Telemetry Playback Merger is a persistent process responsible for receiving telemetry
housekeeping playback filesfrom EDOS and then merging them with the existing hourly telemetry
files. The playback EDUs are stored in the archive and the telemetry from previous real -time con-
tactsisarchived only if the playback file has a sequence gap or bad quality. Aseach hourly telem-
etry fileisfilled, it is then saved in both local and long-term storage.

3.11.1 DMS Playback Merger Context
The DM S Playback Merger interfaces are described below and displayed in the context diagram.
EDOS:

Sends a notification to the playback merger once a playback file has been sent to us and is
available to be merged.

Long-term Storage:

Receives notification from the playback merger that a complete hourly telemetry file is
available to be copied to long-term storage.

3-130 305-CD-049-001

Analysis.

Receives notification from the playback merger that an hourly telemetry file has been
successfully merged and is ready for Analysis to perform statistics on.

3.11.2 DMS Telemetry Playback Merge Interfaces
Table 3.11-1. Telemetry Playback Merge Interfaces

Interface Interface Class Interface Class Service Provider Service | Frequency
Service Description User
Send hourly FALTScdoSend Notify SCDO of new DMS DMS Approx. 2/
files to SCDO hourly file. day
Inform FoArAnalF Notify Analysis ANA DMS Approx. 2/
Analysis that a subsystem of new hourly day
timfile is ready tim file.
for statistics.
Inform DMS FAArEDOSPbkIF | Notify DMS that a EDOS DMS Approx. 2/
that a playback file is ready. day
playback file is
ready to be
merged.

Note: Above tableis subject to change.

3.11.3 DMS Telemetry Playback Merge Object Model

The FdArPbkMerger object merges playback housekeeping data with existing real-time and play-
back data in a seamless archive. FdArPbkMerger uses the receive function of FAArEDOSPbkIF
to await notification from EDOS when a playback file is available to be merged. Two FdArHour-
lyTImFile objectsare utilized - onefor the existing hourly file and onefor the temporary file which
will contain the merged data and which will eventually supersede the existing hourly file. The
FdArPbkFile object is utilized to access the playback files and read the EDUs from them. Once
the EDUs are read, FdArPbkMerger uses FAArSAU.build to build the SAUs from the EDUs. If a
sequence gap existsin the playback file, or if the playback SAU isof bad quality, then the existing
hourly telemetry file is opened and the matching SAU isretrieved (if it exists). In cases where a
sequence gap occurs which cannot currently be filled, FdArPbkMerger will move on and call Fd-
MtRTUpdateNotification.send to update the telemetry metadata to indicate that a gap exists. The
FdArUserData.convertTime function is used to verify that the spacecraft time of the EDU isvalid.
When the top of an hour is reached, FdArPbkMerger calls FdMtUpdateNotification to update
metadata to reference the completed hourly file. Also, FdArPbkMerger calls FOArAnalF.send to
notify Analysis that a new hourly telemetry file is now complete and ready for statistics calcula-
tions. When an hourly telemetry file is completely filled, FdArPbkMerger also calls FALTSc-
doSend.send to notify long-term storage that a complete telemetry file is ready to be copied over
to the long-term archive.

The FAArSAU object is used to build and store the SAUs. It also maintains the current telemetry
sequence count and verifies that the EDU sequence count isin order. In addition, FAArSAU ver-
ifies, updates and maintains the start & stop time of the current, contiguous, telemetry stream.

3-131 305-CD-049-001

ceT-€

T00-670-AD-S0€

DMS

Metadata

<<—File Updates

SCDO

<<—Hourly Tlm Files

Status

EDOS

Playback File

 Playback File Notification

DMS

Event
—FEvent Msgs———>>{ Logger
This System
DMS
Telemetry . e Analvsi
Playback TIm File Notification >> Analysis
Merger
-Complete Hourly Tim Files>> ;4
Archival

Partial Hourly TIm Files

Figure 3.11-1. DMS Telemetry Playback Merger Context Diagram

The FdArHourlyTImFile object is responsible for operations on the archive file. The FdMtUp-
dateNotification object providesthe interface between the archiver and the archive metadata table.
This notification is sent whenever a new file is opened. The FAMtRTUpdateNotification object
providesthe interface to the 'avail able telemetry' metadatatable. Thistable contains start and stop
times of all contiguous telemetry datain the archive. The FdArPbkFile object is used to perform
I/O operations on the playback file received from EDOS.

The FAArEDOSPbKIF object is used to notify the playback merger that a playback file exists and
isready to bemerged. The FALTScdoSend object isutilized to notify long-term storage that acom-
pleted hourly telemetry fileis ready to be copied over to long-term storage.

3.11.4 DMS Telemetry Playback Merger Dynamic Model
3.11.4.1 Telemetry Playback Merger Scenario 1

3.11.4.1.1 Telemetry Playback Merger Scenario 1 Abstract

The Playback Merger scenario 1 describes the receipt of a complete (i.e. no sequence gaps) play-
back file from EDOS, the reading of thisfile and its merge into the existing archive. The scenario
also describes the merge activities of notifying the interested parties of the newly-created, com-
plete hourly telemetry files.

3.11.4.1.2 Telemetry Playback Merger Scenario 1 Summary Information
Interfaces:
EDOS
Analysis
SCDO
Stimulus:
Receipt of aplayback file from EDOS.
Desired Response:
Seamless, merged archive of playback data with existing real-time and playback data.
Notification to Analysis that new hourly telemetry files are ready for statistics.
Notification to SCDO that new hourly telemetry files are ready for long-term storage.

Update metadata to accurately reflect all real-time and playback data currently in the
system and available for use.

Pre-Conditions:
Playback merger software has been initiated
Post-conditions:

3.11.4.1.3 Telemetry Playback Merger Scenario 1 Description

The playback merger receives notification from EDOS that a playback file has been sent over and
is ready for processing. The playback merger then instantiates two FdArHourlyTImFile objects.
Thefirst instanceisfor atemporary hourly file which will eventually contain all of the merged da-
ta. The second instanceisfor the hourly file whose time corresponds with the start time of the play-
back file data. The existing hourly fileis opened and its playback contents are first copied into the
temporary hourly file.

3-133 305-CD-049-001

FdLTScdoSend E
FaAnaArchProxy
+ send(DataType,Location,Filename) : int
+ send(myFilename,myLocation) ~: int
FAArEDOSPbKIF s onds 1’] + receive() :int
+
myFilename : char[36] sends
- myLocation : char[36]
1+ |
send() :int o receive: 9
+ receive() :int
P =
1+ .
é reads + it :int | sends g FdMtUpdateNofification
FdArPDFile 1+ -
- myFilename : char[36]
myFilename : char[36] - myAction :int
myLocation : char{36] - myTime :time
+ close() :int + receive() :int
+ write() :int + send() :int
+ read() :int builds] builds + setAction(int) : void
+ open() :int + setTime(time) : void
+ sefFilename(char(36]) : void
sends
] 1
FdArHourlyTimFile .—E 12 =]
- FdMtRTUpdateNotification
- myFilename : char[36] FIATSAU
myLocation : char[36] e 1+ [- myDataForm :int
- B - myScid :int
+ Close() :int - myPrevSeqCount :int - myDataType :int
+ Write() :int - myRTStartTime :time - myStopTime : time
: Eead(()) m(l - myRTStopTime :time - myStartTime : time
pen() : int
+ Store() :int + setStartTime(time) : void
+ Build() :int + setStopTime(time) : void
+ setRTStartTime(time) : void + setDataType(int) ~ : void
+ setRTStopTime(time) : void + setscid(int) : void
: g:ig::g::zg :.:: + setDataForm(int) : void
: + receive() :int
+ checkSeqCount() :int + send() :int
+ getPrevSeqCount() :int
+ getSeqCount() :int
+ setPrevSeqCount(int) : void
+ setSeqCount(int) : void

FdArHeader getsTimeFrom

FdArUserData

- myLength :int
myScid it

- myDataTypeid :int
myTime : time
myDataSource : int
- myQuality :int

+ retrieveData() :int
+ convertTime() : time

Figure 3.11-2. DMS Telemetry Playback Merger Object Model

3-134 305-CD-049-001

GET-€

T00-670-AD-S0€

FdArPbkMerger

DMS Processing of Contiguous Playback File

FAArEDOSPbkIF FdArPbkFile FdArSAU
Receives
<<~ playback —
notification
I<&— Get EDU from playback file —
Builds SAU >>

Sends Analysis notification

Sends metadatg update

FdArHourlyTImFile
(existing)

Stofes SAU ———>>

Loads existing
| playback SAUs >

FdArHourlyTImFile
(temporary)

FoArAnalF

FdMtUpdateNotification

Sends RT/PBK metadata updpt

Sends hourly file to

FdMtRTUpdateNotification

e

long-term storage

FdLTScdoSend

Status:

Figure 3.11-3. DMS Telemetry Playback Merger Scenario 1 Event Trace

The playback merger instantiates an FdArPbkFile object to access the playback file. The EDUs
are read from the playback file and the playback merger instantiates an FAArSAU object to build
the playback Standard Archive Units. The sequence counters are checked, asisthe spacecraft time,
to ensure that the playback data has no gaps and that the times are correct. Aseach hour of datais
merged, the temporary telemetry file supersedesthe existing hourly file. Thisprocessing isrepeat-
ed for each EDU in the playback file.

As each hour is completed, the playback merger uses an instance of FOArAnal F to notify Analysis
that an existing hourly fileisready for statistics generation. Telemetry file metadataiis also updat-
ed using an instance of FdMtUpdateNotification and FAMtRTUpdateNotification (for real-time/
playback availability). Finally, the playback merger notifies SCDO of the hourly file via an in-
stance of the FAL TScdoSend class.

3.11.4.2 Telemetry Playback Merger Scenario 2

3.11.4.2.1 Telemetry Playback Merger Scenario 2 Abstract

The Playback Merger scenario 2 describes the receipt of a playback file from EDOS which con-
tains a sequence gap, the reading of thisfile and its merge into the existing archive. The scenario
also describes the merge activities of notifying the interested parties of the newly-created, com-
plete hourly telemetry files.

3.11.4.2.2 Telemetry Playback Merger Scenario 2 Summary Information
Interfaces:
EDOS
Anaysis
SCDO
Stimulus:
Receipt of aplayback file from EDOS.
Desired Response:
Seamless, merged archive of playback data with existing real-time and playback data.
Notification to Analysis that new hourly telemetry files are ready for statistics.
Notification to SCDO that new hourly telemetry files are ready for long-term storage.

Update metadata to accurately reflect all real-time and playback data currently in the
system and available for use.

Pre-Conditions:
Playback merger software has been initiated
Post-conditions:

3-136 305-CD-049-001

LET-E

T00-670-AD-S0€

FdArPbkMerger

DMS Processing of Playback File with Sequence Gap

Sends Analysis notification

Sends metadatg update

FdArHourlyTImFile

FdArHourlyTImFile

FAArEDOSPbKIF FdArPbkFile FAArSAU (existing) (temporary)
Receives
<~ playback — Loads existin:
notification — playback SAUs —>
I<&— Get EDU from playback file —
Builds SAU >>
et missing SAU
om existing file
Stofes SAU ————>>

FoArAnalF

FdMtUpdateNotification

Sends RT/PBK metadata updpt

Sends hourly file to

e

FdMtRTUpdateNotification

long-term storage

FdLTScdoSend

Status:

Figure 3.11-4. DMS Telemetry Playback Merger Scenario 2 Event Trace

3.11.4.2.3 Telemetry Playback Merger Scenario 2 Description

The playback merger receives notification from EDOS that a playback file has been sent over and
is ready for processing. The playback merger instantiates two FAArHourlyTImFile objects. The
first instance is for a temporary hourly file which will eventually contain all of the merged data.
The second instance is for the hourly file whose time corresponds with the start time of the play-
back file data. The existing hourly file is opened and its playback contents are first copied into the
temporary hourly file.

The playback merger instantiates an FdArPbkFile object to access the playback file. The EDUs
are read from the file and the playback merger instantiates an FAArSAU object to build the play-
back Standard Archive Units. The sequence counter check indicates a sequence gap (the playback
file is missing one or more EDUS). At this point, the appropriate, existing hourly file is opened
and issearched for themissing EDU(s). Inthisscenario, the missing EDU(s) arelocated and stored
to the temporary file from the existing hourly file. When the gap has been filled, processing con-
tinues as before.

As each hour is completed, the playback merger uses an instance of FOArAnal F to notify Analysis
that an existing hourly fileisready for statistics generation. Telemetry file metadataiis al so updat-
ed using an instance of FdMtUpdateNotification and FAMtRTUpdateNotification (for real-time/
playback availability). Finally, the playback merger notifies SCDO of the hourly file via an in-
stance of the FAL TScdoSend class.

3.11.5 DMS Telemetry Playback Merger Data Dictionary

FAArEDOSPbkIF
class FAArEDOSPbkIF
This class contains the interface between EDOS & the playback merger task.

Public Construction

FAArEDOSPbkIF()
This function is the default constructor for the class

~FdArEDOSPbkIF()
This function is the default destructor for the class

Public Functions

int receive()
This function receives notification from EDOS

int send()
This function sends notification to the merger.

3-138 305-CD-049-001

Private Data
char myFilename[36]

This member variable contains the playback file name

char myL ocation[36]

This member variable contains the playback file location

FdArHeader
class FdArHeader
This class contains the SAU header information

Public Construction

FdArHeader()
Thisisthe default constructor for the class

~FdArHeader()
Thisisthe default destructor for the class

Private Data

int myDataSour ce

This member contains the data source
int myDataTypeid

This member contains the data type
int myL ength

This member contains the data length
int myQuality

This member contains the data quality
int myScid

This member contains the spacecraft 1D
timemyTime

This member contains the time stamp

FdArHourlyTImFile
classFdArHourlyTImFile
This class contains the hourly telemetry file

3-139

305-CD-049-001

Public Construction

FdArHourlyTImFile()
Thisisthe default constructor for the class

~FdArHourlyTImFile()
Thisisthe default destructor for the class

Public Functions
int Close(void)
This function closes the hourly tim file
int Open(void)
This function opens the hourly tim file
int Read(void)
This function reads the hourly tIm file
int Write(void)
This function writes to the hourly tim file
Private Data
char myFilename[36]
This member variable contains the tim file name
FdArPbkFile

class FdArPbkFile
This class contains the playback file

Public Construction

FAArPbkFile()
This function is the default constructor for the class

~FdArPbkFile()
FdArPbkFile
This function is the default destructor for the class

Public Functions

int close()

This function closes the playback file
int open()
This function opens the playback file

3-140

305-CD-049-001

int read()
This function reads the playback file
int write()
This function writes to the playback file

Private Data
char myFilename[36]
This member variable contains the playback file name
char myL ocation[36]
This member variable contains the playback file location

FdArPbkM er ger
class FdArPbkMerger
This class represents the playback merger task

Public Construction
FdArPbkMerger ()
Thisisthe default constructor for the class
~FdArPbkMerger()
Thisisthe default destructor for the class

Public Functions
intinit()
This function initializes the playback merger
int run()
This function runs the playback merger

FdArSAU
classFdArSAU
This class contains the Standard Archive Unit for the telemetry archiver, retriever, & playback

merger
Public Construction

FdArSAU(listenAddr)
Thisisthe default constructor for the class

~FdArSAU()
Thisisthe default destructor for the class

3-141 305-CD-049-001

Public Functions

int Build(void)

This function builds the SAU
int Stor e(void)

This function stores the SAU
int checkSeqCount()

This function validates the sequence count
int getPrevSeqCount()

This function retrieves the previous seq count
time getRT StartTime()

This function retrieves the stream start time
time getRT StopTime()

This function retrieves the stream stop time
int getSeqCount()

This function retrieves the sequence count
void setPrevSeqCount(int)

This function sets the previous sequence counter
void setRT StartTime(time)

This function sets the stream start time
void setRT StopTime(time)

This function sets the stream stop time
void setSeqCount(int)

This function sets the sequence count

Private Data

int myPrevSeqCount
This member variable contains the previous sequence count

time myRT StartTime

This member variable contains the stream start time
time myRT StopTime

This member variable contains the stream stop time

int mySeqCount
This member variable contains the current sequence count

3-142

305-CD-049-001

FdArUserData
class FdArUser Data
This class contains the EDU data

Public Construction

FdArUser Data()
Thisfunction is the default constructor

~FdArUser Data()
Thisfunction is the default destructor

Public Functions
time convertTime()

This function converts the time in the EDU to the desired format

int retrieveData()
This function retrieves the EDU

FdL T ScdoSend
class FdL T ScdoSend

This class represents the interface between the playback merger and SCDO

Public Construction

FdL T ScdoSend()
Thisisthe default constructor for the class

~FdL T ScdoSend()
Thisisthe default destructor for the class

Public Functions
int send(void)
This class sends notification to SCDO
Private Data

int myDataType
This member contains the data type of thefile

char myFilename[36]
This member contains the name of thefile

char myL ocation[36]
This member contains the location of thefile

3-143

305-CD-049-001

FAMtRTUpdateNotification
class FAMtRTUpdateNotification

This class contains the interface between the playback merger and the RT/PBK metadata

Public Construction
FAMtRTUpdateNotification()
Thisisthe default constructor for the class

~FdMtRTUpdateNotification()
Thisisthe default destructor for the class

Public Functions

int receive()

This function receives the notification
int send()

This function sends the notification
void setDataFor m(int)

This function sets the Dataform attribute
void setDataType(int)

This function sets the DataType attribute
void setScid(int)

This function sets the Scid attribute
void setStartTime(time)

This function sets the StartTime attribute
void setStopTime(time)

This function sets the StopTime attribute

Private Data

int myDataForm

This member variable contains the stream form (RT vs PBK)
int myDataType

This member variable contains the stream data type
int myScid

This member variable contains the stream SC id

timemyStartTime
This member variable contains the stream start time

3-144

305-CD-049-001

timemyStopTime
This member variable contains the stream stop time

FdMtUpdateNotification
class FdMtUpdateNotification
This class contains the interface between the playback merger and the DM S metadata

Public Construction
FdMtUpdateNoatification()
Thisisthe default constructor for the class

~FdMtUpdateNotification()
Thisisthe default constructor for the class

Public Functions

int receive()

This function receives the notification
int send()

This function sends the notification
void setAction(int)

This function sets the Action attribute
void setFilename(char)

This function sets the Filename attribute
void setTime(time)

This function sets the Time attribute

Private Data
int myAction
This member contains the requested action

char myFilename[36]

This member contains the filename for metadata
timemyTime

This member contains the Time

FoArAnalF
class FOArAnal F
This class contains the interface between Analysis and the playback merger

3-145 305-CD-049-001

Public Construction

FoArAnalF()
Thisisthe default constructor for the class

~FoArAnal F()
FoArAna F
Thisisthe default destructor for the class

Public Functions
int receive()
This function receives the notification
int send()
This function sends the notification to Analysis

Private Data
char myFilename[36]
This member variable contains the tim file name
char myL ocation[36]
This member variable contains the tim file location

3.12 DMS Telemetry Retrieval

The DM S Telemetry Retrieval processis a persistent process responsible for accepting user replay
requests (Shared, Dedicated, or Analysis requests) and serving the datato the appropriate Analysis
and Telemetry processes required to processthereplay data. The user specifiesthe various param-
eters surrounding the replay request and the telemetry retrieval process ensures that the requested
dataisretrieved (either locally or from long-term storage) and served. Thetelemetry retrieval pro-
cess places the user requests in a queue and maintains this queue over the life of the process while
providing users with the ability to look into the queue and view the status of their respective re-
quests.

3.12.1 DMS Telemetry Retrieval Context

The DMS Telemetry Retrieval interfaces are described below and displayed in the context dia-
gram.

Long-term Storage:

Receives a request from the telemetry retrieval process that one or more requested telemetry
files need to be transferred from long-term to local storage.

Sends files and notification once all requested files have been sent over.

3-146 305-CD-049-001

Analysis.

The Analysisrequest manager receivesthe analysisrequest from the telemetry retrieval request
gueue manager. The request manager sends replay status back to the request queue
manager.

The Analysis cruncher sends arequest for EDUs to the Data Retriever
The Analysis cruncher receives EDUs from the Data Retriever.
Telemetry:
Receives telemetry EDUS.
FUI:
Sends user replay requests to the request queue manager.
Sends requests for the status of previously submitted replay requests.
Receives status on previously submitted replay requests.
Sends start/pause/step requests to the Data Retriever(s).

3-147 305-CD-049-001

8v1-¢

T00-670-AD-S0€

——Telemetry EDUS———>>

Telemetry
This System
< Replay/Analysis Replay/Analysis
Requests Requests
Request DMS Telemetry
Manager Status Retrieval/Replay Status Requests— FUI
Status————>>
-Telemetry EDU Request
——Archived TIm Files—
Lg?grgzrem) _ Intermediate Status Analysis
%Agggfegle Telemetry EDUS———>>

Figure 3.12-1. DMS Telmetry Retrieval Context Diagram

3.12.2 DMS Telemetry Retrieval Interfaces
Table 3.12-1. DMS Telemetry Retrieval Interfaces

Interface Interface Class Interface Class Service Service Frequency
Service Description Provider User

Send request | FaRpFUIToQueu |Provide interface between DMS FUI Frequently
info to DMS eProxy FUI & DMS

FdRgReplayRequ | Specific request information

est
Send request | FaRpQueueToFU | Provide interface between FUI DMS Frequently
status infoto | IProxy DMS & FUI
FUI

FoDsReplayStatu | Status of the replay request

S

FoDsReplayString | String information of the

replay request

Send request | FaRpAnalysisStat | Provide analysis request FUI DMS Frequently
status to FUl |us status info to FUI
Send analysis | FaRpQueueToRe | Provide interface between ANA DMS Frequently
request to the | qMgrProxy DMS and the request
request manager for analysis requests
manager

FdRgReplayRequ | Specific request information

est
Send FaRpRegMgrToQ | Provide interface between DMS ANA Frequently
messages and | ueueProxy request manager & DMS
status fromthe
request mgrto
DMS

FoDsReplayStatu | Status of the replay request

S

FoDsReplayString | String information of the

replay request

Allow FUI to FdRgFUIToDataR | Provide interface between DMS FUI Frequently
control replay | etrieverProxy FUI and DMS data retriever
data flow
Allow FdRpRegMgrToD | Provide interface between DMS FUI Frequently
Analysis to RProxy analysis cruncher and DMS
control data retriever
analysis
request data
flow

Note: Above table is subject to change.

3-149

305-CD-049-001

3.12.3 DMS Telemetry Retrieval Object Model

The FoDsRequestQueueMgr object queues up, submits, and monitors all user replay requests
(Shared, Dedicated, Analysis). FoDsRequestQueueMgr uses the FaRpFUIToQueueProxy to re-
ceive incoming requests (contained in the FdRgReplayRequest object). The FoDsRequest-
QueueMgr.dbLookup function is called to partition the request by its separate database
components (if the request crosses over a database boundary). For analysis requests, the findSta-
tion function is then invoked in order to determine upon which machine to execute the request.
Oncethisinformation is determined then the request queue, FoDsRequestQueue, is updated to in-
clude this new request. FoDsRequestQueueMgr also checksto seeif the requested telemetry files
are located at long-term storage. If so, then FALTScdoRetrieve is used to retrieve those files from
SCDO.

For analysisrequests and dedi cated replay requests, the request information isthen passed via FaR-
pQueueT oRegM grProxy to the FaAnRequestMgr on the selected machine. FaAnRequestMgr will
then initiate FoDsDataRetriever on the user station to serve the telemetry data. For shared replay
requests, FoDsRequestQueueMgr initiates the FoDsDataRetriever process on the Data Server.

Theinitialization status of analysis and dedicated replays requestsis contained in FoDsReplay Sta-
tus and is sent back from FaAnRequestMgr to FoDsRequestQueueMgr via FaRpRegMgrTo-
QueueProxy. FoDsRequestQueueMgr determines the initialization status for shared replay
requests. FoDsRequestQueueMgr sends the status back to FUI via FaRpQueueToFUIProxy. If
the startup was successful, then FUI initiates the replay using FORgFUIToDataRetrieverProxy.
This proxy allows FUI to start and stop the data flow from the Data Retriever. Once FoDsDataRe-
triever receives the start request from FUI, it begins reading the telemetry files using FdArHour-
lyTImFile functions and building EDUs from the SAUs using FtDSEDU.build. The Data Retriever
then sends the EDUs to the appropriate destination address by invoking the sendTImEDU member
function.

FUI can halt and restart the replay process using the FORqFUI ToDataRetrieverProxy, or it can can-
cel the replay via the FaRpFUIToQueueProxy. When the replay is canceled, then FoDsRequest-
QueueMgr forwards on the cancellation request to FaAnRegeuestM gr and del etes the request from
the queue by calling the deleteFromQueue function of FoDsRequestQueueMgr.

3-150 305-CD-049-001

TGT-€

T00-6¥0-dD-S0E

- FdRqReplayRequest FoDsRegquestQueue
- myRequestType : enum(Submit,Cancel,GetStatus) myReque_stID : EcTI_nt
FaRpFUIToQueueProxy - myRequestiD : EcTInt myStartTime : ECTTime
- myReplayType : enum(Shared,Dedicated,Analysis) myStopTime : E_cTTlme
+ receive() : int - myStartTime : ECTTime myFRzepIayF:_ateP. ECTIEtTl .
- - myStopTime : EcTTime my gqgesmg roc - EcTin
+ send(FdRgReplayRequest) : int ~ mypriarity : EcTint myPn_omy - EcTint
- myScid : EcTInt mysc'd : EcTint
- myParamList : file * byl mysStation : EcTInt
- myRequestingProc : EcTint myDa'abaS,e":" : EST'”'
- myDatabaselD : EcTInt myParamltlst - file
i - myReplayRate : EcTInt myStatus : EcTint
myFileLocation : EcTInt
FaRpQueueToFUIProxy myStringID : EcTInt
myDRpid : IpcAddr*
+ send(FoDsReplayStatus) : EcTInt & myPrevPartition : queue entry *
+ receive() : EcTInt myNextPartition : queue entry *
FaRpAnalysisStatus
myStatusProxy
i + send(Status) : int
+ receive() :int
FoDsReplayStatus
- myStatus : enum {Pending, Error, Active} i
- myReplayData : Container* = EcCNull
mylnitStatusProxy FoDsRequestQueueMgr
=] T init) :int .
FoDsDBTable + run() :int ets FdLTScdoRetrieve E
y + handleSharedReq() : int 1+ myFilename
Container - myStartTime + handleAnaDedReq() : int miLocation FdArHourlyTImFile
- myDbid + i -
v . :;:g%tzzz% _'::‘t‘ myType - myFilename : char[36]
{CoTs im;iememation) 4 deleteFromQL;eue() “int - myLocation : char[36]
E + updateQueue() : int + Close() : int
FoDsReplayString + flndStallon(reque_stType) : _|m + Wite() : int
+ dbLookup(startTime,stopTime) : FoDsDBTable * + Read() :int
myStringld : EcTInt 1+, Open() Lint
myTImpid : IpcAddr*)
myDRpid : IpcAddr* il initlates
myStartTime : EcCTTime
myStopTime : ECTTime FaRpRegMgrToQueueProxy
FtDSEDU
+ send(MsgType,ReplayType,FoDsReplayStatus): int 1+
+ receive() :int
0 build =
send FAArSAU
reads receive
B
FaRpQueueToRegMgrProxy
+ receive() : int = builds
+ send(FdRgReplayRequest) : int FoDsDataRetriever
- myDestinationAddr : int 2]
FoRgFUIToDataRetrieverProx
FaAnRequestMar 1 FdRpReqMgrToDRProxy + retrieveTIMSAU() : int d Y
a 9 + sendTImEDU() : int
send + send(RequestType,startTime,stopTime): int
+ receive() :int
myFUIReplayControlProxy 0

Figure 3.12-2. DMS Telemetry Retrieval Object Model

3.12.4 DMS Telemetry Retrieval Dynamic Model

3.12.4.1.1 Telemetry Retrieval/Replay Scenario 1 Abstract

The Telemetry Retrieval/Replay scenario 1 describes the processing of an Analysis request from
FULI.

3.12.4.1.2 Telemetry Retrieval/Replay Scenario 1 Summary Information
Interfaces:
FUI
Anaysis
SCDO
RMS
Stimulus:
Receipt of an Analysis request from FUI.
Desired Response:

Initialize logical string components, enter request onto the queue, & serve the requested
data to the specified analysis process(es).

Upon completion of request, delete entry from the queue.
Pre-Conditions:

Request Queue manager software has been initiated.
Post-conditions:

3.12.4.1.3 Telemetry Retrieval Scenario 1 Description

The Request Queue Manager receives an analysis request from FUI. The Request Queue Manager
adds the request to the request queue. A quick look is taken to determine the location of the nec-
essary telemetry files. If one or more are located at long-term storage, then FAL TScdoRetrieve is
used to request the needed files. A status is returned from SCDO once the transfer is complete.
The request is then submitted to the Request Manager on an available user station. The Request
Manager creates an FoDsDataRetriever process (aswell asan Analysis& Telemetry process). The
status of the initialization is then determined by the Request Manager. This status is sent to the
Reguest Queue Manager, who updates the appropriate entry in the request queue and returns the
status information to FUI.

If the initialization was successful, then FUI sends a start request to the appropriate FoDsDataRe-
triever process. The Data Retriever then begins reading the telemetry files and serving the EDUs
to the Analysis cruncher process. When the replay is complete, the Request Manager sends the
completion status back to the Request Queue Manager. The Request Queue Manager passes the
completion status to FUI and then del etes the entry from the request queue.

3-152 305-CD-049-001

eqtr-€

T00-670-AD-S0€

FUI

Request Mgr/

Analysis Request Scenario

Figure 3.12-3. DMS Telemetry Retrieval Scenario 1 Event Trace

FoDsRequestQueueMgr FoDsReplayStatus FdRgReplayRequest FoDsRequestQueue RMS FoDsDataRetriever FdLTScdoRetrieve FdArHourlyTImFile Ana
<&——+—build replay request
send replay
[request >
4dds request to queue >>|
request telemetry|files >>
<< tatu
submits reguest >>f
—instantiates—=>
instantjates >>
[build replay initialization statug——>>
<< send replay status
pdate request status >>|
ésend status_| << send start request
to FUI
<<——accesg tim files—————
[send d4gta to analysis crunchegq——>>
<& build replay domplete status
gnd completio << send completion status
status
I delete request from queup—— >

3.12.4.2.1 Telemetry Retrieval/Replay Scenario 2 Abstract

The Telemetry Retrieval/Replay scenario 2 describes the processing of a Dedicated replay request
from FUI.

3.12.4.2.2 Telemetry Retrieval/Replay Scenario 2 Summary Information
Interfaces:
FUI
Anaysis
TLM
SCDO
RMS
Stimulus:
Receipt of a Dedicated replay request from FUI.
Desired Response:

Initialize logical string components, enter request onto the queue, & serve the requested
data to the specified telemetry process.

Upon completion of request, delete entry from the queue.
Pre-Conditions:

Request Queue manager software has been initiated.
Post-conditions:

3.12.4.2.3 Telemetry Retrieval/Replay Scenario 2 Description

The request queue manager receives a dedicated replay request from FUI. The Request Queue
Manager adds the request to the request queue. A quick look is taken to determine the location of
the necessary telemetry files. If one or more are located at long-term storage, then FALTSc-
doRetrieve is used to request the needed files. A statusis returned from SCDO once the transfer
is complete. The request is then submitted to the Request Manager on an available user station.
The Request Manager creates an FoDsDataRetriever process and a Telemetry process. The status
of the initialization is then determined by the Request Manager. This status is sent to FoDsRe-
guestQueueMgr, who updates the appropriate entry in the request queue and returns the request
status information to FUI.

If the initialization was successful, then FUI sends a start request to the appropriate FoDsDataRe-
triever process. The Data Retriever then begins reading the telemetry files and serving the EDUs
to the Telemetry process. When thereplay iscomplete, the Request Manager sends the completion
status back to the Request Queue Manager. The Request Queue Manager passes the completion
status to FUI and FUI then issues a cancel request to the FoDsRequestQueueMgr. FoDsRequest-
QueueMgr sends the request on to the Request Manager so that the Request Manager can clean up.
FoDsRegeustQueueMgr then deletes the request from the request queue.

3-154 305-CD-049-001

qqr-€

T00-670-AD-S0€

FUI FoDsRequestQueueMgr

<———

send replay
I~ request >

Dedicated Replay Request Scenario

to FUI

Qsend status_|

gnd completiol
status

request

send cancel
I >

Figure 3.12-4. DMS Telemetry Retrieval Scenario 2 Event Trace

FdRqReplayRequest FoDsRequestQueue Request Mgr FopsDataRetriever ~ FdLTScdoRetrieve FdArHourlyTImFile TIm
build replay request———
————adds request tg queUe———————————>>
request telemetry files >>|
< status
gubmits request >>
—instantiates>>]
instanfiates >
<< send replay initialization status
—————update request status————>>
sgnd start request >
<&<——acces$ tim files————
end data to TIm————>>
<< sendl 'delete replay' status
send cancel request >>
—————delete request frgm queue——>>

3.12.4.3.1 Telemetry Retrieval/Replay Scenario 3 Abstract

The Telemetry Retrieval/Replay scenario 3 describes the processing of a Shared replay request
from FUI.

3.12.4.3.2 Telemetry Retrieval/Replay Scenario 3 Summary Information
Interfaces:
FUI
Anaysis
TLM
SCDO
Stimulus:
Receipt of a Shared replay request from FUI.
Desired Response:

Initializelogical string components, enter request onto the queue, & multicast the requested
data to whomever is listening.

Upon completion of request, delete entry from the queue.
Pre-Conditions:

Request Queue manager software has been initiated.
Post-conditions:

3.12.4.3.3 Telemetry Retrieval/Replay Scenario 3 Description

The Request Queue Manager receives a shared replay request from FUI. The Request Queue Man-
ager adds the request to the request queue. A quick look is taken to determine the location of the
necessary telemetry files. If one or more arelocated at long-term storage, then FAL T ScdoRetrieve
is used to request the needed files. A statusis returned from SCDO once the transfer is complete.
The Request Queue Manager then creates a Data Retriever process on the Data Server which will
multicast out the requested telemetry data. The request isthen submitted to a Request Manager on
an available user station. The Request Manager then initializes the necessary components. The
status of this initialization is determined by the Request Manager and sent to the Request Queue
Manager. FoDsRequestQueueMgr updates the appropriate entry in the request queue and returns
the request status information to FUI.

If the initialization was successful, then FUI sends a start request to the appropriate FoDsDataRe-
triever process. The Data Retriever then begins reading the telemetry files and multicasting the
EDUs to any listening Telemetry process. When the replay is complete, the Request Manager
sends the compl etion status back to the Request Queue

3-156 305-CD-049-001

LST-€

T00-670-AD-S0€

Shared Replay Request Scenario

FUI FoDsRequestQueueMgr FdRqgReplayRequest FoDsRequestQueue FoDsDataRetriever FdLTScdoRetrieve FdArHourlyTImFile '\Aggirceizt
<—buill:i replay request——
e >
———adds request to queug——>>|
request telemetry files >>
<< statys
instantiates >>1
<< status
———update request status——>>
<_sert1g Ebaltus_
send gtart request >>|
<&—— acces$ tIm files—————
multicast datar >
=< send completion status
éend ;:tt;mgletlon_
send cancel
| request > send cancel request >>|
————————delete entry from queue——m7m7m—>>

Figure 3.12-5. DMS Telemetry Retrieval Scenario 3 Event Trace

Manager. The Request Queue Manager passes the completion statusto FUI and FUI then issuesa
cancel request to the FoDsRequestQueueMgr. FoDsRequestQueueMgr sends the request on to the
Reguest Manager so that the Request Manager can clean up. FoDsRegeustQueueMgr then deletes
the request from the request queue.

3.12.5 DMS Telemetry Retrieval Data Dictionary

FaRpFUIToQueueProxy

class FaRpFUI T oQueuePr oxy
This class contains the proxy between FUI and the Request Queue Manager

Public Construction

FaRpFUIToQueueProxy()
This function is the default constructor for the class

~FaRpFUI ToQueueProxy()
Thisfunction is the default constructor for the class

Public Functions
int receive()
This function receives the request
int send(FdRgReplayRequest)
This function sends the request
FaRpRegMgr ToQueuePr oxy

class FaRpReqM gr ToQueuePr oxy
This class represents the proxy between the queue manager and the request manager

Public Construction

FaRpRegM gr ToQueuePr oxy()
Thisisthe default constructor for the class

~FaRpRegqM gr ToQueuePr oxy()
Thisisthe default constructor for the class

Public Functions
int receive()
This function receives the messages from the request manager
int send(MsgType, ReplayType, FoDsReplay Status)

Thisfunction sends the request status to the request manager. The MsgType can be either:
1) Replay Status, 2) RegMagr registering, or 3) ReqMgr unregistering with the queue mgr.

3-158 305-CD-049-001

The ReplayType parameter is really needed only if the MsgTypeis2 or 3.

FaRqDbidL ookupProxy
class FaRgDbidL ookupProxy

This class represents the interface to DMS' DB |ookup tool

Public Construction
FaRqDbidL ookupProxy()
Thisisthe default constructor for the class

~FaRqDbidL ookupProxy()
Thisisthe default destructor for the class

Public Functions
void receive()
This function receives the request
int send(StartTime, StopTime, Scid)
This function sends the request to DM S

FdArHourlyTImFile
classFdArHourlyTImFile
This class contains the hourly telemetry file

Public Construction

FdArHourlyTImFile()
Thisisthe default constructor for the class

~FdArHourlyTImFile()
Thisisthe default destructor for the class

Public Functions
int Close(void)
This function closes the hourly tim file
int Open(void)
This function opens the hourly tim file
int Read(void)
This function reads the hourly tim file
int Write(void)
This function writes to the hourly tim file

3-159

305-CD-049-001

Private Data
char myFilename[36]
This member variable contains the tim file name

FdRgReplayRequest
class FdRgReplayRequest
This class represents the information to be passed from FUI to the request queue manager as
part of areplay request. This class of datawill come over in the FaRpFUIToQueueProxy.
Public Construction
FdRgReplayRequest()
Thisisthe default constructor for the class
~FdRqReplayRequest()
Thisisthe default destructor for the class

Private Functions
enum(Shared, Dedicated, Analysis)

This member variable contains the type of replay being requested (Shared, Dedicated,
Analysis)

enum(Submit, Cancel, GetStatus)
This member variable contains the request type (Submit request, Cancel request, Get re-
guest status)
Private Data
EcTInt myDatabasel D
This member variable contains request database
file* myParamList
This member variable contains the request parameter list
EcTInt myPriority
This member variable contains the request priority
EcTInt myReplayRate
This member variable contains the replay rate
EcTInt myRequestiD
This member variable contains the request 1D

EcTInt myRequestingProc
This member variable contains the ID of the requesting FUI

3-160 305-CD-049-001

EcTint myScid

This member variable contains the request SCID
EcTTime myStartTime

This member variable contains the request start time
EcTTime myStopTime

This member variable contains the request stop time

FoDsDataRetriever
class FoDsDataRetriever
This class contains the Data Retriever which will retrieve requested telemetry datafrom the ar-
chive.
Public Construction
FoDsDataRetriever()
This function is the default constructor for the class

~FoDsDataRetriever ()
This function is the default constructor for the class

Public Functions
int retrieveTIMSAU()
This function retrieves the next SAU from the archive

int sendTIMEDU()
This function sends the EDU to the Destination address

Private Data

int myDestinationAddr
This member variable contains the EDU's destination address

int myReplayRate
This member variable contains the replay rate
FoDsRequestQueue

class FoDsRequestQueue
This class represents the queue of all requests madeto DMS

Public Construction

FoDsRequestQueue()
Thisisthe default constructor for the class

3-161 305-CD-049-001

~FoDsRequestQueug()
Thisisthe default destructor for the class

Private Data
queue entry
This member variable contains the queue entry of the next portion of the the replay request

queue entry

This member variable contains the queue entry of the previous portion of the request (re-
play requests may be partitioned based on DB crossovers)

IpcAddr* myDRpid

This member variable contains the process ID of the Data Retriever which is serving the
telemetry

EcTInt myDatabasel D

This member variable contains the request DB id
EcTInt myFilelL ocation

This member variable contains the location of the requested data files
file* myParamList

This member variable contains the request parameter list
EcTInt myPriority

This member variable contains the request priority
EcTInt myReplayRate

This member variable contains the request replay rate
EcTInt myRequest| D

This member variable contains the request ID
EcTInt myRequestingProc

This member variable contains the requesting FUI id
EcTInt myScid

This member variable contains the request SCID
EcTTime myStartTime

This member variable contains request start time
Ectint myStation

This member variable contains the station upon which the request is being executed (Anal-
ySis requests)

EcTInt myStatus
This member variable contains the request status

3-162 305-CD-049-001

EcTTime myStopTime

This member variable contains the request stop time
EcTInt myStringl D

This member variable contains the ID of the replay string

FoDsRequestQueueM gr
class FoDsRequestQueueM gr
This class represents the request queue manager task

Public Construction

FoDsRequestQueueMgr ()
Thisisthe default constructor for the class

~FoDsRequestQueueMgr ()
Thisisthe default destructor for the class

Public Functions
FoDsDBTable* dbL ookup(startTime, stopTime)

This function determines the DB id(s) required to perform the requested replay.

int deleteFromQueue()
This function deletes from the request queue

int findStation(requestType)

This function finds a user station which is available to perform the requested processing.

int handleAnaDedReq()
This function handles analysis & dedicated requests

int handleSharedReq()

This function handles shared replay requests
intinit()

This function initializes the request queue mgr

int readQueue()
This function reads the request queue

int run()
This executes the request queue manager task

int updateQueue()
This function updates the request queue

3-163

305-CD-049-001

int writeQueue()
This function writes to the request queue
FoRqgFUI ToDataRetriever Proxy

class FORqFUI ToDataRetriever Proxy
This class represents the interface between FUI and the Data Retriever

Public Construction

FoRgFUI ToDataRetriever Proxy()
Thisisthe default constructor for the class

~FoRqgFUI ToDataRetriever Proxy()
Thisisthe default destructor for the class

Public Functions
int receive()
This function receives the request
int send(RequestType, startTime, stopTime)
This function sends the request to the Data Retriever

3-164 305-CD-049-001

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

ARAM Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

Cl Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

AB-1 305-CD-049-001

CRC
CSCl
CSMS
CSS
CSTOL
CTIU
DAAC
DAR
DAS
DAT
DB
DBA
DBMS
DCE
DCP
DEC
DES
DFCD
DID
DMS
DOD
DoD
DS
DSN
DSS
e-mail
Ecom
ECS
EDOS
EDU
EGS
EOC

EOD
EON
EOS

Cyclic Redundancy Code

Computer software configuration item
Communications and Systems Management Segment

Communications Subsystem (CSMS)

Customer System Test and Operations Language
Command and Telemetry Interface Unit (AM-1)

Distributed Active Archive Center
Data Acquisition Request
Detailed Activity Schedule
Digital Audio Tape

DataBase

Database Administrator

Database Management System
Distributed Computing Environment
Default Configuration Procedure
Digital Equipment Corporation
Data Encryption Standard

Data Format Control Document
Data Item Description

Data Management Subsystem
Digital Optical Data

Department of Defense

Data Server

Deep Space Network

Decision Support System
electronic mail

EOS Communication

EOSDIS Core System

EOS Data and Operations System
EDOS Data Unit

EOS Ground System

Earth Observation Center (Japan);
EOS Operations Center (ECS)

Entering Orbital Day
Entering Orbital Night
Earth Observing System

AB-2

305-CD-049-001

EOSDIS
EPS
ESH
ESN
ETS
EU
EUVE
FAS
FAST
FDDI
FDF
FDIR
FDM
FMEA
FOP
FORMATS
FOS
FOT
FOV
FPS
FRM
FSE
FTL
FUI
GB
GCM
GCMR
GIMTACS
GMT
GN
GOES
GSFC
GUlI
H&S
H/K
HST

EOS Data and Information System
Encapsul ated Postscript

EDOS Service Header

EOSDI'S Science Network

EOS Test System

Engineering Unit

Extreme Ultra Violet Explorer

FOS Analysis Subsystem

Fast Auroral Snapshot Explorer
Fiber Distributed Data Interface
Flight Dynamics Facility

Fault Detection and I solation Recovery
FOS Data Management Subsystem
Failure Modes and Effects Analyses
Frame Operations Procedure

FDF Orbital and Mission Aids Transformation System

Flight Operations Segment

Flight Operations Team

Field-Of-View

Fast Packet Switch

FOS Resource Management Subsystem

FOT S/C Evolutions

FOS Telemetry Subsystem

FOS User Interface

Gigabytes

Global Circulation Model

Global Circulation Model Request

GOES I-M Telemetry and Command System
Greenwich Mean Time

Ground Network

Geostationary Operational Environmental Satellite
Goddard Space Flight Center

Graphical User Interface

Health and Safety

Housekeeking

Hubble Space Telescope

AB-3

305-CD-049-001

I/F
1/0
ICC
ICD
ID
IDB
IDR
|EEE
|OT
P
IP-ICC
IPs
IRD
ISDN
ISOLAN
ISR
IST
IST
IWG
JPL
Kbps
LAN
LaRC
LASP
LEO
LOS
LSM
LTIP
LTSP
MAC

MB
MBONE
Mbps
MDT
MIB

Interface

I nput/Output

Instrument Control Center
Interface Control Document
| dentifier

Instrument Database
Incremental Design Review

Institute of Electrical and Electronics Engineers

Instrument Operations Team
International Partners

International Partners-1nstrument Control Center

International Partners

Interface requirements document
Integrated Systems Digital Network
Isolated Local Area Network

Input Schedule Request

Instrument Support Terminal
Instrument Support Toolkit
Investigator Working Group

Jet Propulsion Laboratory

Kilobits per second

Local Area Network

Langley Research Center
Laboratory for Atmospheric Studies Project
Low Earth Orbit

Lossof Signd

Loca System Manager

Long-Term Instrument Plan
Long-Term Science Plan

Medium Access Control;
Message Authentication Code

Megabytes

Multicast Backbone

M egabits per second

Mean Down Time
Management Information Base

AB-4

305-CD-049-001

MISR
MMM
MO&DSD
MODIS
MOPITT
MSS
MTPE
NASA
Nascom
NASDA
NCAR
NCC
NEC
NFS
NOAA
NSI
NTT
OASIS
ODB
ODM
OMT
(0[]
OO0D
OpLAN
osl
PACS
PAS
PDB
PDF
PDL
PDR

Pl

PI/TL
PID
PIN
POLAR

Multi-angle Imaging Spectro-Radiometer
Minimum, Maximum, and Mean

Mission Operations and Data Systems Directorate (GSFC Code 500)

M oderate resolution Imaging Spectrometer
Measurements Of Pollution In The Troposphere
Management Subsystem

Mission to Planet Earth

National Aeronautics and Space Administration
NASA Communications Network

National Space Development Agency (Japan)
National Center for Atmospheric Research
Network Control Center

North Equator Crossing

Network File System

National Oceanic and Atmospheric Administration
NASA Science Internet

Nippon Telephone and Telegraph

Operations and Science Instrument Support
Operational Database

Operational Data Message

Object Model Technique

Object Oriented

Object Oriented Design

Operational LAN

Open System Interconnect

Polar Acquisition and Command System
Planning and Scheduling

Project Data Base

Publisher's Display Format

Program Design Language

Preliminary Design Review

Principal Investigator

Principal Investigator/Team Leader
Parameter |ID

Password Identification Number

Polar Plasma L aboratory

AB-5

305-CD-049-001

POSIX
PSAT
PSTOL
QIL
RIT
RAID
RCM
RDBMS
RMA
RMON
RMS
RPC
RTCS
RTS

SSIM

STOL

Polar-Orbiting Platform

Portable Operating System for Computing Environments
Predicted Site Acquisition Table

PORTS System Test and Operation Language
Quick Look

Real-Time

Redundant Array of Inexpensive Disks
Real-Time Contact Management

Relational Database Management System
Reliability, Maintainability, Availability

Remote Monitoring

Resource Management Subsystem

Remote Processing Computer

Relative Time Command Sequence

Relative Time Sequence;
Real-Time Server

Spacecraft

Schedule Add Requests

Spacecraft Controls Computer

Science Computing Facility

Spacecraft Command Language

Software Development Facility

Science Data Processing Segment

Software Development and Validation Facility
Systems, Engineering, and Analysis Support
South Equator Crossing

Support LAN

S-band Multiple Access

Service Management Center

Space Network

System Network Mgt Protocol

Structured Query Language

S-band Single Access

Spacecraft Simulator

Solid State Recorder

System Test and Operations Language

AB-6

305-CD-049-001

T&C
TAE
TBD
TBR
TCP
TD
TDM
TDRS
TDRSS
TIROS
TL
TLM
TMON
TOO
TOPEX
TPOCC
TRMM
TRUST
TSS
TSTOL
T™W
u.s.
UAV
ul

UPS
us
UTC

VAX
VMS
WIS
WAN
WOTS
XTE

Telemetry and Command

Transportable Applications Environment

To Be Determined

To Be Replaced/Resol ved/Reviewed
Transmission Control Protocol

Target Day

Time Division Multiplex

Tracking and Data Relay Satellite

Tracking and Data Relay Satellite System
Television Infrared Operational Satellite
Team Leader

Telemetry subsystem

Telemetry Monitor

Target Of Opportunity

Topography Ocean Experiment
Transportable Payload Operations Control Center
Tropical Rainfall Measuring Mission
TDRSS Resource User Support Terminal
TDRSS Service Session

TRMM System Test and Operations Language
Target Week

United States

User AntennaView

User Interface

User Planning System

User Station

Universal Time Code;
Universal Time Coordinated

Virtual Extended Address
Virtual Memory System
Workstation

Wide Area Network

Wallops Orbital Tracking Station
X-Ray Timing Explorer

AB-7

305-CD-049-001

This page intentionally left blank.

AB-8 305-CD-049-001

Glossary

activity

analysis

attitude data

availability

GLOSSARY of TERMS for the Flight Operations Segment

A specified amount of scheduled work that has a defined start
date, takes a specific amount of time to complete, and comprises
definable tasks.

Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis involves the
processing of accumulated data obtained from other verification
methods.

Data that represent spacecraft orientation and onboard pointing
information. Attitude data includes:

» Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler angles or
guaternions, rates and biases, and associated parameters.

« Attitude generated onboard in quaternion or Euler angle form.

 Refined and routine production data related to the accuracy or
knowledge of the attitude.

A measure of the degree to which an item is in an operable and
committable state at the start of a "mission” (a requirement to
perform its function) when the "mission" is called for an
unknown (random) time. (Mathematically, operational
availability is defined as the mean time between failures divided
by the sum of the mean time between failures and the mean down
time [before restoration of function].

GL-1 305-CD-049-001

availability
(inherent) (Aj)

availability
(operational)
(Ao)

baseline
activity profile

build

calibration

The probability that, when under stated conditions in an ideal
support environment without consideration for preventive action,
a system will operate satisfactorily at any time. The “ided
support environment” referred to, exists when the stipulated
tools, parts, skilled work force manuals, support equipment and
other support items required are available. Inherent availability
excludes whatever ready time, preventive maintenance
downtime, supply downtime and administrative downtime may
require. Aj can be expressed by the following formula:

Aj =MTBF (MTBF + MTTR)

Wheree MTBF = Mean Time Between Failures
MTTR = Mean Time To Repair

The probability that a system or equipment, when used under
stated conditions in an actual operational environment, will
operate satisfactorily when called upon. Ag can be expressed by

the following formula:

Ao = MTBM /(MTBM + MDT + ST)
Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and logistics actions are all
considered.

ST = Standby Time (or switch over time)

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating long
termplans(i.e., LTSP, LTIP, and long term spacecraft operations
plan).

An assemblage of threadsto produce agradual buildup of system
capabilities.

The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and the
spacecraft engineering data. It includes pre-flight calibration
measurements, in-flight calibrator measurements, calibration
equation coefficients derived from calibration software routines,
and ground truth data that are to be used in the data calibration
processing routine.

GL-2 305-CD-049-001

command

command and
data handling
(C&DH)

command
group

detailed
activity
schedules

direct broadcast

EOS Data and
Operations
System
(EDOS)
production
data set

Instruction for action to be carried out by a space-based
Instrument or spacecraft.

The spacecraft command and data handling subsystem which
conveys commands to the spacecraft and research instruments,
collects and formats spacecraft and instrument data, generates
time and frequency references for subsystems and instruments,
and collects and distributes ancillary data.

A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed execution,
but are executed immediately upon reaching their destination on
board. For the U.S. spacecraft, from the perspective of the EOS
Operations Center (EOC), a preplanned command group is
preprocessed by, and stored at, the EOC in preparation for later
uplink. A real-time command group is unplanned in the sense
that it is not preprocessed and stored by the EOC.

The schedule for a spacecraft and instruments which covers up to
a 10-day period and is generated/updated daily based on the
instrument activity listing for each of the instruments on the
respective spacecraft. For a spacecraft and instrument schedule
the spacecraft subsystem activity specifications needed for
routine spacecraft maintenance and/or for supporting
instruments activities are incorporated in the detailed activity
schedule.

Continuous down-link transmission of selected real-time data
over a broad area (non-specific users).

Data sets generated by EDOS using raw instrument or spacecraft
packets with space-to-ground transmission artifacts removed, in
time order, with duplicate data removed, and with quality/
accounting (Q/A) metadata appended. Time span or number of
packets encompassed in a single data set are specified by the
recipient of the data. These data sets are equivalent to Level 0
data formatted with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with quality
and accounting information from each individual packet and the
data set itself and with essentia formatting information for
unambiguous identification and subsequent processing.

GL-3 305-CD-049-001

housekeeping
data

instrument

instrument
activity
deviation list
instrument
activity list

instrument
engineering
data

instrument
Mi Croprocessor
memory loads

instrument
resource
deviation list

instrument
resource profile

instrument
science data

long-term
instrument
plan (LTIP)

The subset of engineering data required for mission and science
operations. These include health and safety, ephemeris, and
other required environmental parameters.

* A hardware system that collects scientific or operational data.

» Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

* An integrated collection of hardware containing one or more
sensors and associated controls designed to produce dataon/in an
observational environment.

An instrument's activity deviations from an existing
instrument activity list, used by the EOC for developing the
detailed activity schedule.

An instrument's list of activities that nominally covers seven
days, used by the EOC for developing the detailed activity
schedule.

Subset of telemetered engineering data required for performing
instrument operations and science processing.

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads could
include microprocessor-stored tables, microprocessor-stored
commands, or updates to microprocessor software.

An instrument's anticipated resource deviations from an

existing resource profile, used by the EOC for establishing
TDRSS contact times and building the preliminary resource
schedule.

Anticipated resource needs for an instrument over atarget
week, used by the EOC for establishing TDRSS contact times
and building the preliminary resource schedule.

Data produced by the science sensor(s) of an instrument, usually
constituting the mission of that instrument.

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. Itisgenerated or updated approximately
every six months and covers a period of up to approximately 5
years.

GL-4 305-CD-049-001

long-term
science plan
(LTSP)

long term
spacecraft
operations plan

mean time
between failure
(MTBF)

mean down
time (MDT)

mean time
between
maintenance
(MTBM)

mean time to
repair (MTTR)

object

orbit data

playback data

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated approximately
every six monthsand coversaperiod of up to approximately five
years.

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from the
Flight Dynamics Facility, spanning a period of several months.

Thereliability result of the reciprocal of afailure rate that
predicts the average number of hours that an item, assembly or
piece part will operate within specific design parameters.
(MTBF=1/(]) failurerate; (1) failurerate=# of failures/operating
time.

Sum of the mean time to repair MTTR plus the average logistic
delay times.

The mean time between preventive maintenance (MTBPM) and
mean time between corrective maintenance (MTBCM) of the
ECS equipment. Each will contribute to the calculation of the
MTBM and follow therelationship: YMTBM = 1/MTBPM + 1/
MTBCM

The mean time required to perform corrective maintenance to
restore a system/equipment to operate within design parameters.

I dentifiable encapsul ated entities providing one or more services
that clients can request. Objects are created and destroyed as a
result of object requests. Objects are identified by client via
unique reference.

Data that represent spacecraft locations. Orbit (or ephemeris)
data include: Geodetic latitude, longitude and height above an
adopted reference ellipsoid (or distance from the center of mass
of the Earth); a corresponding statement about the accuracy of
the position and the corresponding time of the position (including
the time system); some accuracy requirements may be hundreds
of meters while other may be afew centimeters.

Data that have been stored on-board the spacecraft for delayed
transmission to the ground.

GL-5 305-CD-049-001

preliminary
resource
schedule

preplanned
stored
command

principal
investigator
(P1)

prototype

raw data

real-time data

reconfiguration

Aninitial integrated spacecraft schedule, derived from

instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

A command issued to an instrument or subsystem to be executed
at some later time. These commands will be collected and
forwarded during an available uplink prior to execution.

An individual who is contracted to conduct a specific scientific
investigation. (Aninstrument Pl is the person designated by the
EOS Program as ultimately responsible for the delivery and
performance of standard products derived from an EOS
instrument investigation.).

Prototypes are focused developments of some aspect of the
system which may advance evolutionary change. Prototypes
may be developed without anticipation of the resulting software
being directly included in a formal release. Prototypes are
developed on afaster time scale than the incremental and formal
development track.

Dataintheir original packets, asreceived from the spacecraft and
instruments, unprocessed by EDOS.

* Level 0 — Raw instrument data at original resolution, time
ordered, with duplicate packets removed.

* Level 1A —Levd 0 data, which may have been reformatted or
transformed reversibly, located to a coordinate system, and
packaged with needed ancillary and engineering data.

» Level 1B — Radiometrically corrected and calibrated data in
physical units at full instrument resolution as acquired.

* Level 2—Retrieved environmental variables (e.g., ocean wave
height, soil moisture, ice concentration) at the same |location and
similar resolution asthe Level 1 source data.

» Level 3— Dataor retrieved environmental variables that have
been spatially and/or temporally resampled (i.e., derived from
Datathat are acquired and transmitted immediately to the ground
(as opposed to playback data). Delay islimited to the actual time
required to transmit the data.

A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s objectives.

GL-6 305-CD-049-001

SCC-stored
commands and
tables

scenario

segment

Sensor

spacecraft
engineering
data

spacecraft
subsystems
activity list
spacecraft

subsystems
resource profile

target of
opportunity
(TOO)

thread

Commands and tables which are stored in the memory of the
central onboard computer on the spacecraft. The execution of
these commands or the result of loading these operational tables
occurs sometimefollowing their storage. Theterm “ core-stored”
applies only to the location where the items are stored on the
spacecraft and instruments; core-stored commands or tables
could be associated with the spacecraft or any of the instruments.

A description of the operation of the system in user's
terminology including a description of the output response for a
given set of input stimuli. Scenariosare used to define operations
concepts.

One of the three functional subdivisions of the ECS:

CSMS -- Communications and Systems Management Segment
FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.). Science
and engineering sensors are distinguished according to the
stimuli to which they respond.

» Sensor name: The name of the satellite sensor which was used
to obtain that data.

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

A spacecraft subsystem's list of activities that nominally covers
seven days, used by the EOC for devel oping the detailed activity
schedule.

Anticipated resource needs for a spacecraft subsystem over a
target week, used by the EOC for establishing TDRSS contact
times and building the preliminary resource schedule.

A TOO is a science event or phenomenon that cannot be fully
predicted in advance, thus requiring timely system response or
high-priority processing.

A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

GL-7 305-CD-049-001

thread, as used
in some
Systems
Engineering
documents

toolkits

A set of components (software, hardware, and data) and
operational proceduresthat implement ascenario, portion
of ascenario, or multiple scenarios.

Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
paralel with the ECS.

GL-8 305-CD-049-001

	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2. Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced
	Figure 3.1-1. DMS Context Diagram
	Figure 3.2-1. PDB Ingest Context
	Figure 3.2-2. PDB Ingest Object Model

	3. Data Management Subsystem
	3.1 Data Management Subsystem Context Diagram
	3.2 PDB Ingest
	3.2.1 PDB Ingest Context
	3.2.2 PDB Ingest Interfaces
	3.2.3 PDB Ingest Object Model
	3.2.4. PDB Ingest Dynamic Model
	3.2.5 PDB Ingest Data Dictionary

	3.3 PDB Validation
	3.3.1 PDB Validation Context
	3.3.2 PDB Validation Interfaces
	3.3.3 PDB Validation Object Model
	3.3.4. PDB Validation Dynamic Model
	3.3.5 PDB Validation Data Dictionary

	3.4 PDB Edit
	3.4.1 PDB Edit Context
	3.4.2 PDB Edit Interfaces
	3.4.3 PDB Edit Object Model
	3.4.4 PDB Edit Dynamic Model
	3.4.5 PDB Edit Data Dictionary

	3.5 PDB Report
	3.5.1 PDB Report Context
	3.5.2 PDB Report Interfaces
	3.5.3 PDB Report Object Model
	3.5.4 PDB Report Dynamic Model
	3.5.5 PDB Report Data Dictionary

	3.6 Operational Data Generation
	3.6.1 Operational Data Generation Context
	3.6.2 Operational Data Generation Interfaces
	3.6.3 Operational Data Generation Object Model
	3.6.4. Operational Data Generation Dynamic Model
	3.6.5 Operational Data Generation Data Dictionary

	3.7 DMS Event Processing
	3.7.1 DMS Event Processing Context
	3.7.2 DMS Event Processing Interfaces
	3.7.3 DMS Event Processing Object Model
	3.7.4 DMS Event Processing Dynamic Model

	3.8 DMS Event Retrieval
	3.8.1 DMS Event Retrieval Context
	3.8.2 DMS Event Retrieval Interfaces
	3.8.3 DMS Event Retrieval Object Model
	3.8.4 DMS Event Retrieval Dynamic Model

	3.9 DMS File Management, External Interfaces, Data...
	3.9.1 DMS File Management, External Interfaces, Da...
	3.9.2 DMS File Management, External Interfaces, Da...
	3.9.3 DMS File Management, External Interfaces, Da...
	3.9.4 DMS File Management, External Interfaces, Da...

	3.10 DMS Telemetry Archiver
	3.10.1 DMS Telemetry Archiver Context
	3.10.2 DMS Telemetry Archiver Interfaces
	3.10.3 DMS Telemetry Archiver Object Model
	3.10.4 DMS Telemetry Archival Dynamic Model
	3.10.5 DMS Telemetry Archiver Data Dictionary

	3.11 DMS Telemetry Playback Merger
	3.11.1 DMS Playback Merger Context
	3.11.2 DMS Telemetry Playback Merge Interfaces
	3.11.3 DMS Telemetry Playback Merge Object Model
	3.11.4 DMS Telemetry Playback Merger Dynamic Model...
	3.11.5 DMS Telemetry Playback Merger Data Dictiona...

	3.12 DMS Telemetry Retrieval
	3.12.1 DMS Telemetry Retrieval Context
	3.12.2 DMS Telemetry Retrieval Interfaces
	3.12.3 DMS Telemetry Retrieval Object Model
	3.12.4 DMS Telemetry Retrieval Dynamic Model
	3.12.5 DMS Telemetry Retrieval Data Dictionary

	Figure 3.2-3. PDB Ingest Object Model
	Figure 3.2-4. PDB Ingest Object Model
	Figure 3.2-5. PDB Ingest Object Model
	Figure 3.2-6. PDB Ingest Object Model
	Figure 3.2-7. PDB Ingest Event Trace
	Figure 3.2-8. PDB Ingest State Diagram
	Figure 3.3-1. PDB Validation Object Model
	Figure 3.3-2. PDB Validation Event Trace
	Figure 3.4-1. PDB Edit Object Model
	Figure 3.4-2. PDB Edit Object Model
	Figure 3.4-3. PDB Edit Object Model
	Figure 3.4-4. PDB Edit Object Model
	Figure 3.4-5. PDB Edit Event Trace
	Figure 3.4-6. PDB Edit State Diagram
	Figure 3.5-1. PDB Report Object Model
	Figure 3.5-2. PDB Report Object Model
	Figure 3.5-3. PDB Report Object Model
	Figure 3.5-4. PDB Report Object Model
	Figure 3.5-6. PDB Report Event Trace
	Figure 3.5-7. PDB Report State Diagram
	Figure 3.6-1. Operational Data Generation Object M...
	Figure 3.6-2. Operational Data Generation Object M...
	Figure3.6-3. Operational Data Generation Object Mo...
	Figure 3.6-4. Operational Data Generation Object M...
	Figure 3.6-5. Operational Data Generation Object M...
	Figure 3.6-6. Operational Data Generation Object M...
	Figure 3.6-7. Operational Data Generation Event Tr...
	Figure 3.6-8. Operational Data Generation Event Tr...
	Figure 3.6-9. Operational Data Generation Event Tr...
	Figure 3.6-10. Operational Data Generation Event T...
	Figure 3.6-11. Operational Data Generation State D...
	Figure 3.7-1. DMS Event Processing Context
	Figure 3.7-2 . DMS Event Processing Object Model
	Figure 3.7-3. DMS Event Procesing Event Trace
	Figure 3.8-1. DMS Event Retrieval Context Diagram
	Figure 3.8-2 . DMS Event Retrieval Object Model
	Figure 3.8-3 . DMS Event Retrieval Event Trace
	Figure 3.9-1. DMS File Management, External Interf...
	Figure 3.9-2. DMS File Management, External Interf...
	Figure 3.9-3. DMS File Management, External Interf...
	Figure 3.9-4. DMS File Management, External Interf...
	Figure 3.9-5. DMS File Storage Event Trace
	Figure 3.9-6. DMS File Retrieval Event Trace
	Figure 3.9-7. DMS Sybase Table Access Event Trace
	Figure 3.9-8. DMS FDF Interface Event Trace
	Figure 3.10-1. DMS Telemetry Archiver Context Diag...
	Figure 3.10-2. DMS Telemetry Archiver Object Model...
	Figure 3.10-3. DMS Telemetry Archiver Event Trace
	Figure 3.11-1. DMS Telemetry Playback Merger Conte...
	Figure 3.11-2. DMS Telemetry Playback Merger Objec...
	Figure 3.11-3. DMS Telemetry Playback Merger Scena...
	Figure 3.11-4. DMS Telemetry Playback Merger Scena...
	Figure 3.12-1. DMS Telmetry Retrieval Context Diag...
	Figure 3.12-2. DMS Telemetry Retrieval Object Mode...
	Figure 3.12-3. DMS Telemetry Retrieval Scenario 1 ...
	Figure 3.12-4. DMS Telemetry Retrieval Scenario 2 ...
	Figure 3.12-5. DMS Telemetry Retrieval Scenario 3 ...

	Abbreviations and Acronyms
	Glossary

